6 resultados para Immunologic Deficiency Syndromes -- blood -- immunology

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficiency of blood coagulation factor V or tissue factor causes the death of mouse embryos by 10.5 days of gestation, suggesting that part of the blood coagulation system is necessary for development. This function is proposed to require either generation of the serine protease thrombin and cell signaling through protease-activated receptors or an activity of tissue factor that is distinct from blood clotting. We find that murine deficiency of prothrombin clotting factor 2 (Cf2) was associated with the death of approximately 50% of Cf2−/− embryos by embryonic day 10.5 (E10.5), and surviving embryos had characteristic defects in yolk sac vasculature. Most of the remaining Cf2−/− embryos died by E15.5, but those surviving to E18.5 appeared normal. The rare Cf2−/− neonates died of hemorrhage on the first postnatal day. These studies suggest that a part of the blood coagulation system is adapted to perform a developmental function. Other mouse models show that the absence of platelets or of fibrinogen does not cause fetal wastage. Therefore, the role of thrombin in development may be independent of its effects on blood coagulation and instead may involve signal transduction on cells other than platelets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conversion of prothrombin (FII) to the serine protease, thrombin (FIIa), is a key step in the coagulation cascade because FIIa triggers platelet activation, converts fibrinogen to fibrin, and activates regulatory pathways that both promote and ultimately suppress coagulation. However, several observations suggest that FII may serve a broader physiological role than simply stemming blood loss, including the identification of multiple G protein-coupled, thrombin-activated receptors, and the well-documented mitogenic activity of FIIa in in vitro test systems. To explore in greater detail the physiological roles of FII in vivo, FII-deficient (FII−/−) mice were generated. Inactivation of the FII gene leads to partial embryonic lethality with more than one-half of the FII−/− embryos dying between embryonic days 9.5 and 11.5. Bleeding into the yolk sac cavity and varying degrees of tissue necrosis were observed in many FII−/− embryos within this gestational time frame. However, at least one-quarter of the FII−/− mice survived to term, but ultimately they, too, developed fatal hemorrhagic events and died within a few days of birth. This study directly demonstrates that FII is important in maintaining vascular integrity during development as well as postnatal life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 3-yr-old female patient exhibited interleukin 12 (IL-12) deficiency that was associated with recurrent episodes of pneumococcal pneumonia with sepsis and other infections in the absence of fevers. The patient’s peripheral blood mononuclear cells (PBMCs) exhibited normal proliferative responses to antigens. Immune responses, including in vivo production of antibodies to diphtheria, tetanus, or pneumococcal antigens, were normal. Ig levels and B cell and T cell phenotypes were also normal. In contrast, IL-12 p70 heterodimer production was undetectable by using supernatants of the patient’s stimulated PBMCs when compared with control cells treated similarly. Although present, interferon γ (IFN-γ) was reduced. The addition of recombinant IFN-γ to control cells enhanced the production of IL-12 by up to sixfold. By contrast, IL-12 was undetectable in supernatants of the patient’s cells in the presence of recombinant IFN-γ. IL-12 p40 subunit mRNA by using the patient’s PBMCs after stimulation with Staphylococcus aureus Cowan strain 1 or lipopolysaccharide was also undetectable by reverse transcription–PCR when compared with control cells. Production of IL-2, IL-6, tumor necrosis factor α, or IFN-γ of the patient’s PBMCs after appropriate stimulation was observed. This patient has either a defect in Staphylococcus aureus Cowan strain 1-lipopolysaccharide- or staphylococcal enterotoxin A-induced signaling pathways for the activation of IL-12 p40 gene expression, or an abnormality in the IL-12 p40 gene itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common Variable Immuno-Deficiency (CVID) is the most common symptomatic primary antibody-deficiency syndrome, but the basic immunologic defects underlying this syndrome are not well defined. We report here that among eight patients studied (six CVID and two hypogammaglobulinemic patients with recurrent infections), there is in two CVID patients a dramatic reduction in Ig V gene somatic hypermutation with 40–75% of IgG transcripts totally devoid of mutations in the circulating memory B cell compartment. Functional assays of the T cell compartment point to an intrinsic B cell defect in the process of antibody affinity maturation in these two cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In α1-AT deficiency, a misfolded but functionally active mutant α1-ATZ (α1-ATZ) molecule is retained in the endoplasmic reticulum of liver cells rather than secreted into the blood and body fluids. Emphysema is thought to be caused by the lack of circulating α1-AT to inhibit neutrophil elastase in the lung. Liver injury is thought to be caused by the hepatotoxic effects of the retained α1-ATZ. In this study, we show that several “chemical chaperones,” which have been shown to reverse the cellular mislocalization or misfolding of other mutant plasma membrane, nuclear, and cytoplasmic proteins, mediate increased secretion of α1-ATZ. In particular, 4-phenylbutyric acid (PBA) mediated a marked increase in secretion of functionally active α1-ATZ in a model cell culture system. Moreover, oral administration of PBA was well tolerated by PiZ mice (transgenic for the human α1-ATZ gene) and consistently mediated an increase in blood levels of human α1-AT reaching 20–50% of the levels present in PiM mice and normal humans. Because clinical studies have suggested that only partial correction is needed for prevention of both liver and lung injury in α1-AT deficiency and PBA has been used safely in humans, it constitutes an excellent candidate for chemoprophylaxis of target organ injury in α1-AT deficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Norepinephrine, released from sympathetic neurons, and epinephrine, released from the adrenal medulla, participate in a number of physiological processes including those that facilitate adaptation to stressful conditions. The thymus, spleen, and lymph nodes are richly innervated by the sympathetic nervous system, and catecholamines are thought to modulate the immune response. However, the importance of this modulatory role in vivo remains uncertain. We addressed this question genetically by using mice that lack dopamine β-hydroxylase (dbh−/− mice). dbh−/− mice cannot produce norepinephrine or epinephrine, but produce dopamine instead. When housed in specific pathogen-free conditions, dbh−/− mice had normal numbers of blood leukocytes, and normal T and B cell development and in vitro function. However, when challenged in vivo by infection with the intracellular pathogens Listeria monocytogenes or Mycobacterium tuberculosis, dbh−/− mice were more susceptible to infection, exhibited extreme thymic involution, and had impaired T cell function, including Th1 cytokine production. When immunized with trinitrophenyl-keyhole limpet hemocyanin, dbh−/− mice produced less Th1 cytokine-dependent-IgG2a antitrinitrophenyl antibody. These results indicate that physiological catecholamine production is not required for normal development of the immune system, but plays an important role in the modulation of T cell-mediated immunity to infection and immunization.