3 resultados para Image recognition

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions of chimpanzees to regular mirrors and the results of the standard Gallup mark test have been well documented. In addition to using the mark test to demonstrate self-recognition in a regular mirror, we exposed six female chimpanzees to mirrors that produced distorted or multiplied self-images. Their reactions to their self-images, in terms of mirror-guided self-referenced behaviors, indicated that correct assessment of the source of the mirror image was made by each subject in each of the mirrors. Recognition of a distorted self-image implies an ability for abstraction in the subjects in that the distortion must be rationalized before self-recognition occurs. The implications of these results in terms of illuminating the relative importance of feature and contingency of movement cues to self-recognition are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual stimuli that elicit neural activity differ for different retinal ganglion cells and these cells have been categorized by the visual information that they transmit. If specific visual information is conveyed exclusively or primarily by a particular set of ganglion cells, one might expect the cells to be organized spatially so that their sampling of information from the visual field is complete but not redundant. In other words, the laterally spreading dendrites of the ganglion cells should completely cover the retinal plane without gaps or significant overlap. The first evidence for this sort of arrangement, which has been called a tiling or tessellation, was for the two types of "alpha" ganglion cells in cat retina. Other reports of tiling by ganglion cells have been made subsequently. We have found evidence of a particularly rigorous tiling for the four types of ganglion cells in rabbit retina that convey information about the direction of retinal image motion (the ON-OFF direction-selective cells). Although individual cells in the four groups are morphologically indistinguishable, they are organized as four overlaid tilings, each tiling consisting of like-type cells that respond preferentially to a particular direction of retinal image motion. These observations lend support to the hypothesis that tiling is a general feature of the organization of information outflow from the retina and clearly implicate mechanisms for recognition of like-type cells and establishment of mutually acceptable territories during retinal development.