4 resultados para Image processing -- Digital techniques -- Mathematical models

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a controlled image smoothing and enhancement method based on a curvature flow interpretation of the geometric heat equation. Compared to existing techniques, the model has several distinct advantages. (i) It contains just one enhancement parameter. (ii) The scheme naturally inherits a stopping criterion from the image; continued application of the scheme produces no further change. (iii) The method is one of the fastest possible schemes based on a curvature-controlled approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human preimplantation embryos exhibit high levels of apoptotic cells and high rates of developmental arrest during the first week in vitro. The relation between the two is unclear and difficult to determine by conventional experimental approaches, partly because of limited numbers of embryos. We apply a mixture of experiment and mathematical modeling to show that observed levels of cell death can be reconciled with the high levels of embryo arrest seen in the human only if the developmental competence of embryos is already established at the zygote stage, and environmental factors merely modulate this. This suggests that research on improving in vitro fertilization success rates should move from its current concentration on optimizing culture media to focus more on the generation of a healthy zygote and on understanding the mechanisms that cause chromosomal and other abnormalities during early cleavage stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most models of tumorigenesis assume that the tumor grows by increased cell division. In these models, it is generally supposed that daughter cells behave as do their parents, and cell numbers have clear potential for exponential growth. We have constructed simple mathematical models of tumorigenesis through failure of programmed cell death (PCD) or differentiation. These models do not assume that descendant cells behave as their parents do. The models predict that exponential growth in cell numbers does sometimes occur, usually when stem cells fail to die or differentiate. At other times, exponential growth does not occur: instead, the number of cells in the population reaches a new, higher equilibrium. This behavior is predicted when fully differentiated cells fail to undergo PCD. When cells of intermediate differentiation fail to die or to differentiate further, the values of growth parameters determine whether growth is exponential or leads to a new equilibrium. The predictions of the model are sensitive to small differences in growth parameters. Failure of PCD and differentiation, leading to a new equilibrium number of cells, may explain many aspects of tumor behavior--for example, early premalignant lesions such as cervical intraepithelial neoplasia, the fact that some tumors very rarely become malignant, the observation of plateaux in the growth of some solid tumors, and, finally, long lag phases of growth until mutations arise that eventually result in exponential growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.