3 resultados para IUCN categories and criteria
em National Center for Biotechnology Information - NCBI
Resumo:
A fundamental question about memory and cognition concerns how information is acquired about categories and concepts as the result of encounters with specific instances. We describe a profoundly amnesic patient (E.P.) who cannot learn and remember specific instances--i.e., he has no detectable declarative memory. Yet after inspecting a series of 40 training stimuli, he was normal at classifying novel stimuli according to whether they did or did not belong to the same category as the training stimuli. In contrast, he was unable to recognize a single stimulus after it was presented 40 times in succession. These findings demonstrate that the ability to classify novel items, after experience with other items in the same category, is a separate and parallel memory function of the brain, independent of the limbic and diencephalic structures essential for remembering individual stimulus items (declarative memory). Category-level knowledge can be acquired implicitly by cumulating information from multiple training examples in the absence of detectable conscious memory for the examples themselves.
Resumo:
Low caloric intake (caloric restriction) can lengthen the life span of a wide range of animals and possibly even of humans. To understand better how caloric restriction lengthens life span, we used genetic methods and criteria to investigate its mechanism of action in the nematode Caenorhabditis elegans. Mutations in many genes (eat genes) result in partial starvation of the worm by disrupting the function of the pharynx, the feeding organ. We found that most eat mutations significantly lengthen life span (by up to 50%). In C. elegans, mutations in a number of other genes that can extend life span have been found. Two genetically distinct mechanisms of life span extension are known: a mechanism involving genes that regulate dauer formation (age-1, daf-2, daf-16, and daf-28) and a mechanism involving genes that affect the rate of development and behavior (clk-1, clk-2, clk-3, and gro-1). We find that the long life of eat-2 mutants does not require the activity of DAF-16 and that eat-2; daf-2 double mutants live even longer than extremely long-lived daf-2 mutants. These findings demonstrate that food restriction lengthens life span by a mechanism distinct from that of dauer-formation mutants. In contrast, we find that food restriction does not further increase the life span of long-lived clk-1 mutants, suggesting that clk-1 and caloric restriction affect similar processes.
Resumo:
The reconstruction of multitaxon trees from molecular sequences is confounded by the variety of algorithms and criteria used to evaluate trees, making it difficult to compare the results of different analyses. A global method of multitaxon phylogenetic reconstruction described here, Bootstrappers Gambit, can be used with any four-taxon algorithm, including distance, maximum likelihood, and parsimony methods. It incorporates a Bayesian-Jeffreys'-bootstrap analysis to provide a uniform probability-based criterion for comparing the results from diverse algorithms. To examine the usefulness of the method, the origin of the eukaryotes has been investigated by the analysis of ribosomal small subunit RNA sequences. Three common algorithms (paralinear distances, Jukes-Cantor distances, and Kimura distances) support the eocyte topology, whereas one (maximum parsimony) supports the archaebacterial topology, suggesting that the eocyte prokaryotes are the closest prokaryotic relatives of the eukaryotes.