6 resultados para IRRADIANCE PREDICTIONS
em National Center for Biotechnology Information - NCBI
Resumo:
Inteins are protein-splicing elements, most of which contain conserved sequence blocks that define a family of homing endonucleases. Like group I introns that encode such endonucleases, inteins are mobile genetic elements. Recent crystallography and computer modeling studies suggest that inteins consist of two structural domains that correspond to the endonuclease and the protein-splicing elements. To determine whether the bipartite structure of inteins is mirrored by the functional independence of the protein-splicing domain, the entire endonuclease component was deleted from the Mycobacterium tuberculosis recA intein. Guided by computer modeling studies, and taking advantage of genetic systems designed to monitor intein function, the 440-aa Mtu recA intein was reduced to a functional mini-intein of 137 aa. The accuracy of splicing of several mini-inteins was verified. This work not only substantiates structure predictions for intein function but also supports the hypothesis that, like group I introns, mobile inteins arose by an endonuclease gene invading a sequence encoding a small, functional splicing element.
Resumo:
Changes in global average temperatures and of the seasonal cycle are strongly coupled to the concentration of atmospheric CO2. I estimate transfer functions from changes in atmospheric CO2 and from changes in solar irradiance to hemispheric temperatures that have been corrected for the effects of precession. They show that changes from CO2 over the last century are about three times larger than those from changes in solar irradiance. The increase in global average temperature during the last century is at least 20 times the SD of the residual temperature series left when the effects of CO2 and changes in solar irradiance are subtracted.
Resumo:
Variability in population growth rate is thought to have negative consequences for organism fitness. Theory for matrix population models predicts that variance in population growth rate should be the sum of the variance in each matrix entry times the squared sensitivity term for that matrix entry. I analyzed the stage-specific demography of 30 field populations from 17 published studies for pattern between the variance of a demographic term and its contribution to population growth. There were no instances in which a matrix entry both was highly variable and had a large effect on population growth rate; instead, correlations between estimates of temporal variance in a term and contribution to population growth (sensitivity or elasticity) were overwhelmingly negative. In addition, survivorship or growth sensitivities or elasticities always exceeded those of fecundity, implying that the former two terms always contributed more to population growth rate. These results suggest that variable life history stages tend to contribute relatively little to population growth rates because natural selection may alter life histories to minimize stages with both high sensitivity and high variation.
Resumo:
Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 μmol m−2 s−1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.