52 resultados para INTEGRINS

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newly emerged hantaviruses replicate primarily in the pulmonary endothelium, cause acute platelet loss, and result in hantavirus pulmonary syndrome (HPS). We now report that specific integrins expressed on platelets and endothelial cells permit the cellular entry of HPS-associated hantaviruses. Infection with HPS-associated hantaviruses, NY-1 and Sin Nombre virus (SNV), is inhibited by antibodies to β3 integrins and by the β3-integrin ligand, vitronectin. In contrast, infection with the nonpathogenic (no associated human disease) Prospect Hill virus was inhibited by fibronectin and β1-specific antibodies but not by β3-specific antibodies or vitronectin. Transfection with recombinant αIIbβ3 or αvβ3 integrins rendered cells permissive to NY-1 and SNV but not Prospect Hill virus infection, indicating that αIIbβ3 and αvβ3 integrins mediate the entry of NY-1 and SNV hantaviruses. Furthermore, entry is divalent cation independent, not blocked by arginine-glycine-aspartic acid peptides and still mediated by, ligand-binding defective, αIIbβ3-integrin mutants. Hence, NY-1 and SNV entry is independent of β3 integrin binding to physiologic ligands. These findings implicate integrins as cellular receptors for hantaviruses and indicate that hantavirus pathogenicity correlates with integrin usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integrin family of cell surface receptors is strongly conserved in higher animals, but the evolutionary history of integrins is obscure. We have identified and sequenced cDNAs encoding integrin β subunits from a coral (phylum Cnidaria) and a sponge (Porifera), indicating that these proteins existed in the earliest stages of metazoan evolution. The coral βCn1 and, especially, the sponge βPo1 sequences are the most divergent of the “β1-class” integrins and share a number of features not found in any other vertebrate or invertebrate integrins. Perhaps the greatest difference from other β subunits is found in the third and fourth repeats of the cysteine-rich stalk, where the generally conserved spacings between cysteines are highly variable, but not similar, in βCn1 and βPo1. Alternatively spliced cDNAs, containing a stop codon about midway through the full-length translated sequence, were isolated from the sponge library. These cDNAs appear to define a boundary between functional domains, as they would encode a protein that includes the globular ligand-binding head but would be missing the stalk, transmembrane, and cytoplasmic domains. These and other sequence comparisons with vertebrate integrins are discussed with respect to models of integrin structure and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divalent cations are thought essential for motile function of leukocytes in general, and for the function of critical adhesion molecules in particular. In the current study, under direct microscopic observation with concomitant time-lapse video recording, we examined the effects of 10 mM EDTA on locomotion of human blood polymorphonuclear leukocytes (PMN). In very thin slide preparations, EDTA did not impair either random locomotion or chemotaxis; motile behavior appeared to benefit from the close approximation of slide and coverslip (“chimneying”). In preparations twice as thick, PMN in EDTA first exhibited active deformability with little or no displacement, then rounded up and became motionless. However, on creation of a chemotactic gradient, the same cells were able to orient and make their way to the target, often, however, losing momentarily their purchase on the substrate. In either of these preparations without EDTA, specific antibodies to β2 integrins did not prevent random locomotion or chemotaxis, even when we added antibodies to β1 and αvβ3 integrins and to integrin-associated protein, and none of these antibodies added anything to the effects of EDTA. In the more turbulent environment of even more media, effects of anti-β2 integrins became evident: PMN still could locomote but adhered to substrate largely by their uropods and by uropod-associated filaments. We relate these findings to the reported independence from integrins of PMN in certain experimental and disease states. Moreover, we suggest that PMN locomotion in close quarters is not only integrin-independent, but independent of external divalent cations as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits α6 and β1, but not against α1 and α2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against β1, but not against α6 or α2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against α1 integrins impaired only cell adhesion to type IV collagen. Antibodies against α1, α2, α6, and β1, but not α5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins α1 and α2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against α1 and α2, but not α6 and β1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against α1 and α2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-α6 antibodies. Our data indicate that α1 and α2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas α6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that CC chemokines induced a sustained increase in monocyte adhesion to intercellular adhesion molecule-1 that was mediated by Mac-1 (αMβ2) but not lymphocyte function–associated antigen-1 (LFA-1; αLβ2). In contrast, staining for an activation epitope revealed a rapid and transient up-regulation of LFA-1 activity by monocyte chemotactic protein-1 (MCP-1) in monocytes and Jurkat CCR2 chemokine receptor transfectants or by stromal-derived factor-1α in Jurkat cells. Differential kinetics for activation of Mac-1 (sustained) and LFA-1 (transient) avidity in response to stromal-derived factor-1α were confirmed by expression of αM or αL in αL-deficient Jurkat cells. Moreover, expression of chimeras containing αL and αM cytoplasmic domain exchanges indicated that α cytoplasmic tails conferred the specific mode of regulation. Coexpressing αM or chimeras in mutant Jurkat cells with a “gain of function” phenotype that results in constitutively active LFA-1 demonstrated that Mac-1 was not constitutively active, whereas constitutive activity was mediated via the αL cytoplasmic tail, implying the presence of distinct signaling pathways for LFA-1 and Mac-1. Transendothelial chemotaxis of monocytes in response to MCP-1 was dependent on LFA-1; however, Mac-1 was involved at MCP-1 concentrations stimulating its avidity, showing differential contributions of β2 integrins. Our data suggest that a specific regulation of β2 integrin avidity by chemokines may be important in leukocyte extravasation and may be triggered by distinct activation pathways transduced via the α subunit cytoplasmic domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion to ECM is required for many cell functions including cytoskeletal organization, migration, and proliferation. We observed that when cells first adhere to extracellular matrix, they spread rapidly by extending filopodia-like projections and lamellipodia. These structures are similar to the Rac- and Cdc42-dependent structures observed in growth factor-stimulated cells. We therefore investigated the involvement of Rac and Cdc42 in adhesion and spreading on the ECM protein fibronectin. We found that integrin-dependent adhesion led to the rapid activation of p21-activated kinase, a downstream effector of Cdc42 and Rac, suggesting that integrins activate at least one of these GTPases. Dominant negative mutants of Rac and Cdc42 inhibit cell spreading in such a way as to suggest that integrins activate Cdc42, which leads to the subsequent activation of Rac; both GTPases then contribute to cell spreading. These results demonstrate that initial integrin-dependent activation of Rac and Cdc42 mediates cell spreading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contact of cultured mammary epithelial cells with the basement membrane protein laminin induces multiple responses, including cell shape changes, growth arrest, and, in the presence of prolactin, transcription of the milk protein β-casein. We sought to identify the specific laminin receptor(s) mediating the multiple cell responses to laminin. Using assays with clonal mammary epithelial cells, we reveal distinct functions for the α6β4 integrin, β1 integrins, and an E3 laminin receptor. Signals from laminin for β-casein expression were inhibited in the presence of function-blocking antibodies against both the α6 and β1 integrin subunits and by the laminin E3 fragment. The α6-blocking antibody perturbed signals mediated by the α6β4 integrin, and the β1-blocking antibody perturbed signals mediated by another integrin, the α subunit(s) of which remains to be determined. Neither α6- nor β1-blocking antibodies perturbed the cell shape changes resulting from cell exposure to laminin. However, the E3 laminin fragment and heparin both inhibited cell shape changes induced by laminin, thereby implicating an E3 laminin receptor in this function. These results elucidate the multiplicity of cell-extracellular matrix interactions required to integrate cell structure and signaling and ultimately permit normal cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a cytokine of central importance for the angiogenesis associated with cancers and other pathologies. Because angiogenesis often involves endothelial cell (EC) migration and proliferation within a collagen-rich extracellular matrix, we investigated the possibility that VEGF promotes neovascularization through regulation of collagen receptor expression. VEGF induced a 5- to 7-fold increase in dermal microvascular EC surface protein expression of two collagen receptors—the α1β1 and α2β1 integrins—through induction of mRNAs encoding the α1 and α2 subunits. In contrast, VEGF did not induce increased expression of the α3β1 integrin, which also has been implicated in collagen binding. Integrin α1-blocking and α2-blocking antibodies (Ab) each partially inhibited attachment of microvascular EC to collagen I, and α1-blocking Ab also inhibited attachment to collagen IV and laminin-1. Induction of α1β1 and α2β1 expression by VEGF promoted cell spreading on collagen I gels which was abolished by a combination of α1-blocking and α2-blocking Abs. In vivo, a combination of α1-blocking and α2-blocking Abs markedly inhibited VEGF-driven angiogenesis; average cross-sectional area of individual new blood vessels was reduced 90% and average total new vascular area was reduced 82% without detectable effects on the pre-existing vasculature. These data indicate that induction of α1β1 and α2β1 expression by EC is an important mechanism by which VEGF promotes angiogenesis and that α1β1 and α2β1 antagonists may prove effective in inhibiting VEGF-driven angiogenesis in cancers and other important pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GD25 cells lacking β1 integrins or expressing β1A with mutations of conserved cytoplasmic tyrosines (Y783, Y795) to phenylalanine have poor directed migration to platelet-derived growth factor or lysophosphatidic acid when compared with GD25 cells expressing wild-type β1A. We studied the effects of v-src on these cells. Transformation with v-src caused tyrosine and serine phosphorylation of wild-type β1A but not of Y783/795F doubly mutated β1A. v-src-transformed cells had rounded and/or fusiform morphology and poor assembly of fibronectin matrix. Adhesion to fibronectin or laminin and coupling of focal contacts to actin-containing cytoskeleton were preserved in transformed Y783/795F cells but lost on transformation when β1A was wild type. Transformed Y783/795F cells also retained ability, albeit limited, to migrate across filters, whereas transformed cells with wild-type β1A were unable to transverse filters. Studies of single tyrosine mutants showed that the more important tyrosine for retaining ability to adhere, assemble focal contacts, and migrate is Y783. These results suggest that overactive phosphorylation of cytoplasmic residues of β1A, particularly Y783, accounts in part for the phenotype of v-src-transformed cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiogenesis underlies the majority of eye diseases that result in catastrophic loss of vision. Recent evidence has implicated the integrins alpha v beta 3 and alpha v beta 5 in the angiogenic process. We examined the expression of alpha v beta 3 and alpha v beta 5 in neovascular ocular tissue from patients with subretinal neovascularization from age-related macular degeneration or the presumed ocular histoplasmosis syndrome or retinal neovascularization from proliferative diabetic retinopathy (PDR). Only alpha v beta 3 was observed on blood vessels in ocular tissues with active neovascularization from patients with age-related macular degeneration or presumed ocular histoplasmosis, whereas both alpha v beta 3 and alpha v beta 5 were present on vascular cells in tissues from patients with PDR. Since we observed both integrins on vascular cells from tissues of patients with retinal neovascularization from PDR, we examined the effects of a systemically administered cyclic peptide antagonist of alpha v beta 3 and alpha v beta 5 on retinal angiogenesis in a murine model. This antagonist specifically blocked new blood vessel formation with no effect on established vessels. These results not only reinforce the concept that retinal and subretinal neovascular diseases are distinct pathological processes, but that antagonists of alpha v beta 3 and/or alpha v beta 5 may be effective in treating individuals with blinding eye disease associated with angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that beta 2 integrins are crucial for leukocyte cell-cell and cell-matrix interactions, and accumulating evidence now suggests that integrins serve not only as a structural link but also as a signal-transducing unit that controls adhesion-induced changes in cell functions. In the present study, we plated human neutrophils on surface-bound anti-beta 2 (CD18) antibodies and found that the small GTP-binding protein p21ras is activated by beta 2 integrins. Pretreatment of the cells with genistein, a tyrosine kinase inhibitor, led to a complete block of p21ras activation, an effect that was not achieved with either U73122, which abolishes the beta 2 integrin-induced Ca2+ signal, or wortmannin, which totally inhibits the phosphatidylinositol 3-kinase activity. Western blot analysis revealed that antibody-induced engagement of beta 2 integrins causes tyrosine phosphorylation of several proteins in the cells. One of these tyrosine-phosphorylated proteins had an apparent molecular mass of 95 kDa and was identified as the protooncogene product Vav, a p21ras guanine nucleotide exchange factor that is specifically expressed in cells of hematopoietic lineage. A role for Vav in the activation of p21ras is supported by the observations that antibody-induced engagement of beta 2 integrins causes an association of Vav with p21ras and that the effect of genistein on p21ras activation coincided with its ability to inhibit both the tyrosine phosphorylation of Vav and the Vav-p21ras association. Taken together, these results indicate that antibody-induced engagement of beta 2 integrins on neutrophils triggers tyrosine phosphorylation of Vav and, possibly through its association, a downstream activation of p21ras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyze the role of alpha4-integrins in lymphoma metastasis, sublines of the T-cell lymphoma LB were generated by retrovirus-mediated gene transfer that differ exclusively in the expression of alpha4-integrins. Using LB-alpha4 and control LB-NTK cells, we demonstrate that expression of alpha4-integrins strongly suppresses metastasis formation of LB lymphoma cells in secondary lymphoid organs such as spleen, mesenteric and peripheral lymph nodes, or Peyer's patches after i.v. injection into syngeneic BALB/c mice. Moreover, alpha4-integrin expression inhibited development of metastatic tumors in liver, lung, and kidney. Expansion of LB lymphoma cells in bone marrow was not affected by alpha4-integrin expression. In vivo migration assays using 51Cr-labeled lymphoma cells demonstrated that low-metastatic LB-alpha4 cells accumulated with the same efficiency as high-metastatic LB-NTK cells in all target organs examined and were even enriched in mucosal lymphoid organs. Collectively, these results indicate that alpha4-integrins inhibit metastasis formation of lymphoma cells at a stage subsequent to the invasion of target organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observed that when monocyte/macrophage precursors derived from murine bone marrow were treated with macrophage-colony-stimulating factor (M-CSF), there was a dose-dependent increase in both the number of adherent cells and the degree to which the cells were highly spread. Attachment was supported by fibronectin, but not by vitronectin or laminin, suggesting that the integrins alpha 4 beta 1 and/or alpha 5 beta 1 might mediate this event. Binding to fibronectin was blocked partially by antibodies to either integrin, and inhibition was almost complete when the antibodies were used in combination. By a combination of surface labeling with 125I and metabolic labeling with [35S]methionine and [35S]cysteine, we demonstrated that M-CSF treatment led to increased synthesis and surface expression of the two beta 1 integrins. Since attachment to fibronectin and/or stromal cells plays an important role in the maturation of other hematopoietic lineages, we propose that the action of M-CSF in the differentiation of immature monocytes/macrophages includes stimulated expression of the integrins alpha 4 beta 1 and alpha 5 beta 1, leading to interactions with components of the marrow microenvironment necessary for cell maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The G protein-coupled m1 and m3 muscarinic acetylcholine receptors increase tyrosine phosphorylation of several proteins, including the focal adhesion-associated proteins paxillin and focal adhesion kinase (FAK), but the mechanism is not understood. Activation of integrins during adhesion of cells to extracellular matrix, or stimulation of quiescent cell monolayers with G protein-coupled receptor ligands including bradykinin, bombesin, endothelin, vasopressin, and lysophosphatidic acid, also induces tyrosine phosphorylation of paxillin and FAK and formation of focal adhesions. These effects are generally independent of protein kinase C but are inhibited by agents that prevent cytoskeletal assembly or block activation of the small molecular weight G protein Rho. This report demonstrates that tyrosine phosphorylation of paxillin and FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is inhibited by soluble peptides containing the arginine–glycine–aspartate motif (the recognition site for integrins found in adhesion proteins such as fibronectin) but is unaffected by peptides containing the inactive sequence arginine–glycine–glutamate. Tyrosine phosphorylation elicited by carbachol, but not by cell adhesion to fibronectin, is reduced by the protein kinase C inhibitor GF 109203X. The response to carbachol is dependent on the presence of fibronectin. Moreover, immunofluorescence studies show that carbachol treatment induces formation of stress fibers and focal adhesions. These results suggest that muscarinic receptor stimulation activates integrins via a protein kinase C-dependent mechanism. The activated integrins transmit a signal into the cell’s interior leading to tyrosine phosphorylation of paxillin and FAK. This represents a novel mechanism for regulation of tyrosine phosphorylation by muscarinic receptors.