3 resultados para INDUCED DENATURATION
em National Center for Biotechnology Information - NCBI
Resumo:
We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum.
Resumo:
We use an off-lattice minimalist model to describe the effects of pressure in slowing down the folding/unfolding kinetics of proteins when subjected to increasingly larger pressures. The potential energy function used to describe the interactions between beads in the model includes the effects of pressure on the pairwise interaction of hydrophobic groups in water. We show that pressure affects the participation of contacts in the transition state. More significantly, pressure exponentially decreases the chain reconfigurational diffusion coefficient. These results are consistent with experimental results on the kinetics of pressure-denaturation of staphylococcal nuclease.
Resumo:
Analysis by acid polyacrylamide/urea gel electrophoresis of 14 individual mitochondrial tRNAs (mt-tRNAs) from human cells has revealed a variable decrease in mobility of the aminoacylated relative to the nonacylated form, with the degree of separation of the two forms not being correlated with the mass, polar character, or charge of the amino acid. Separation of the charged and uncharged species has been found to be independent of tRNA denaturation, being observed also in the absence of urea. In another approach, electrophoresis through a perpendicular denaturing gradient gel of several individual mt-tRNAs has shown a progressive unfolding of the tRNA with increasing denaturant concentration, which is consistent with an initial disruption of tertiary interactions, followed by the sequential melting of the four stems of the cloverleaf structure. A detailed analysis of the unfolding process of charged and uncharged tRNALys and tRNALeu(UUR) has revealed that the separation of the two forms of these tRNAs persisted throughout the almost entire range of denaturant concentrations used and was lost upon denaturation of the last helical domain(s), which most likely included the amino acid acceptor stem. These observations strongly suggest that the electrophoretic retardation of the charged species reflects an aminoacylation-induced conformational change of the 3'-end of these mt-tRNAs, with possible significant implications in connection with the known role of the acceptor end in tRNA interactions with the ribosomal peptidyl transferase center and the elongation factor Tu.