26 resultados para INACTIVATED CATION CHANNELS

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of cell shrinkage on whole-cell currents of M-1 mouse cortical collecting duct cells. Addition of 100 mM sucrose to an isotonic NaCl bath solution induced cell shrinkage and increased whole-cell currents within 5-10 min by approximately 12-fold. The effect was reversible upon return to isotonic solution and could also be elicited by adding 100 mM urea or 50 mM NaCl. Replacement of bath Na+ by K+, Cs+, Li+, or Rb+ did not significantly affect the stimulated inward current, but replacement by N-methyl-D-glucamine reduced it by 88.1 +/- 1.3% (n = 34); this demonstrates that hypertonicity activates a nonselective alkali cation conductance. The activation was independent of extra- and intracellular Ca2+, but 1 or 10 mM ATP in the pipette suppressed it in a concentration-dependent manner, indicating that intracellular ATP levels may modulate the degree of channel activation. Flufenamic acid (0.1 mM) and gadolinium (0.1 mM) inhibited the stimulated current by 68.7 +/- 5.9% (n = 9) and 32.4 +/- 11.7% (n = 6), respectively, whereas 0.1 mM amiloride had no significant effect. During the early phase of hypertonic stimulation single-channel transitions could be detected in whole-cell current recordings, and a gradual activation of 30 and more individual channels with a single-channel conductance of 26.7 +/- 0.4 pS (n = 29) could be resolved. Thus, we identified the nonselective cation channel underlying the shrinkage-induced whole-cell conductance that may play a role in volume regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2(+)-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Regulation of nonspecific cation channels often underlies neuronal bursting and other prolonged changes in neuronal activity. In bag cell neurons of Aplysia, it recently has been suggested that an intracellular messenger-induced increase in the activity of a nonspecific cation channel may underlie the onset of a 30-min period of spontaneous action potentials referred to as the “afterdischarge.” In patch clamp studies of the channel, we show that the open probability of the channel can be increased by an average of 10.7-fold by application of ATP to the cytoplasmic side of patches. Duration histograms indicate that the increase is primarily a result of a reduction in the duration and percentage of channel closures described by the slowest time constant. The increase in open probability was not observed using 5′-adenylylimidodiphosphate, a nonhydrolyzable ATP analog, and was blocked in the presence of H7 or the more specific calcium/phospholipid-dependent protein kinase C (PKC) inhibitor peptide(19–36). Because the increase in activity observed in response to ATP occurred without application of protein kinase, our results indicate that a kinase endogenous to excised patches mediates the effect. The effect of ATP could be reversed by exogenously applied protein phosphatase 1 or by a microcystin-sensitive phosphatase also endogenous to excised patches. These results, together with work demonstrating the presence of a protein tyrosine phosphatase in these patches, suggest that the cation channel is part of a regulatory complex including at least three enzymes. This complex may act as a molecular switch to activate the cation channel and, thereby, trigger the afterdischarge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels are Ca(2+)-permeable, nonspecific cation channels that can be activated through direct interaction with cAMP and/or cGMP. Recent electrophysiological evidence for these channels in cultured hippocampal neurons prompted us to investigate the expression of CNG channel genes in hippocampus. PCR amplification detected the expression of transcripts for subunit 1 of both the rod photoreceptor (RCNGC1) and the olfactory receptor cell (OCNGC1) subtype of CNG channel in adult rat hippocampus. In situ hybridization detected expression of both channel subtypes in most principal neurons, including pyramidal cells of the CA1 through CA3 regions and granule cells of the dentate gyrus. From the hybridization patterns, we conclude that the two genes are colocalized in individual neurons. Comparison of the patterns of expression of type 1 cGMP-dependent protein kinase and the CNG channels suggests that hippocampal neurons can respond to changes in cGMP levels with both rapid changes in CNG channel activity and slower changes induced by phosphorylation. Future models of hippocampal function should include CNG channels and their effects on both electrical responses and intracellular Ca2+ levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) cation channels contain two short sequence motifs--a residual voltage-sensor (S4) and a pore-forming (P) segment--that are reminiscent of similar segments in voltage-activated Shaker-type K+ channels. It has been tacitly assumed that CNG channels and this K+ channel subfamily share a common overall topology, characterized by a hydrophobic domain comprising six membrane-spanning segments. We have systematically investigated the topology of CNG channels from bovine rod photoreceptor and Drosophila melanogaster by a gene fusion approach using the bacterial reporter enzymes alkaline phosphatase and beta-galactosidase, which are active only in the periplasm and only in the cytoplasm, respectively. Enzymatic activity was determined after expression of fusion constructs in Escherichia coli. CNG channels were found to have six membrane-spanning segments, suggesting that CNG and Shaker-type K+ channels, albeit distant relatives within a gene superfamily of ion channels, share a common topology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca2+ stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca2+-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca2+ entry and to test for a role of their respective binding partners in Ca2+ entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca2+ entry. In contrast, F2g enhanced the two forms of Ca2+ entry. We conclude that store depletion-activated Ca2+ entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca2+ from stores and activating Ca2+ influx in response to either increasing IP3 or decreasing luminal Ca2+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the signaling pathways coupling gonadotropin-releasing hormone (GnRH) secretion to elevations in cAMP levels in the GT1 GnRH-secreting neuronal cell line. We hypothesized that increased cAMP could be acting directly by means of cyclic nucleotide-gated (CNG) cation channels or indirectly by means of activation of cAMP-dependent protein kinase (PKA). We showed that GT1 cells express the three CNG subunits present in olfactory neurons (CNG2, -4.3, and -5) and exhibit functional cAMP-gated cation channels. Activation of PKA does not appear to be necessary for the stimulation of GnRH release by increased levels of cAMP. In fact, pharmacological inhibition of PKA activity caused an increase in the basal secretion of GnRH. Consistent with this observation activation PKA inhibited adenylyl cyclase activity, presumably by inhibiting adenylyl cyclase V expressed in the cells. Therefore, the stimulation of GnRH release by elevations in cAMP appears to be the result of depolarization of the neurons initiated by increased cation conductance by cAMP-gated cation channels. Activation of PKA may constitute a negative-feedback mechanisms for lowering cAMP levels. We hypothesize that these mechanisms could result in oscillations in cAMP levels, providing a biochemical basis for timing the pulsatile release of GnRH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Capacitative Ca2+ entry (CCE) is Ca2+ entering after stimulation of inositol 1,4,5-trisphosphate (IP3) formation and initiation of Ca2+ store depletion. One hallmark of CCE is that it can also be triggered merely by store depletion, as occurs after inhibition of internal Ca2+ pumps with thapsigargin. Evidence has accumulated in support of a role of transient receptor potential (Trp) proteins as structural subunits of a class of Ca2+-permeable cation channels activated by agonists that stimulate IP3 formation—very likely through a direct interaction between the IP3 receptor and a Trp subunit of the Ca2+ entry channel. The role of Trp’s in Ca2+ entry triggered by store depletion alone is less clear. Only a few of the cloned Trp’s appear to enhance this type of Ca2+ entry, and when they do, the effect requires special conditions to be observed, which native CCE does not. Here we report the full-length cDNA of mouse trp2, the homologue of the human trp2 pseudogene. Mouse Trp2 is shown to be readily activated not only after stimulation with an agonist but also by store depletion in the absence of an agonist. In contrast to other Trp proteins, Trp2-mediated Ca2+ entry activated by store depletion is seen under the same conditions that reveal endogenous store depletion-activated Ca2+ entry, i.e., classical CCE. The findings support the general hypothesis that Trp proteins are subunits of store- and receptor-operated Ca2+ channels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pores of voltage-gated cation channels are formed by four intramembrane segments that impart selectivity and conductance. Remarkably little is known about the higher order structure of these critical pore-lining or P segments. Serial cysteine mutagenesis reveals a pattern of side-chain accessibility that contradicts currently favored structural models based on alpha-helices or beta-strands. Like the active sites of many enzymes of known structure, the sodium channel pore consists of irregular loop regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations in the genes encoding two proteins of the retinal rod phototransduction cascade, opsin and the beta subunit of rod cGMP phosphodiesterase, cause retinitis pigmentosa (RP) in some families. Here we report defects in a third member of this biochemical pathway in still other patients with this disease. We screened 94 unrelated patients with autosomal dominant RP and 173 unrelated patients with autosomal recessive RP for mutations in the gene encoding the alpha subunit of the rod cGMP-gated cation channel. Five mutant sequences cosegregated with disease among four unrelated families with autosomal recessive RP. Two of these were nonsense mutations early in the reading frame (Glu76End and Lys139End) and one was a deletion encompassing most if not all of the transcriptional unit; these three alleles would not be expected to encode a functional channel. The remaining two mutations were a missense mutation (Ser316Phe) and a frameshift [Arg654(1-bp del)] mutation truncating the last 32 aa in the C terminus. The latter two mutations were expressed in vitro and found to encode proteins that were predominantly retained inside the cell instead of being targeted to the plasma membrane. We conclude that the absence or paucity of functional cGMP-gated cation channels in the plasma membrane is deleterious to rod photoreceptors and is an uncommon cause of RP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A small (96-aa) protein, virus protein R (Vpr), of human immunodeficiency virus type 1 contains one hydrophobic segment that could form a membrane-spanning helix. Recombinant Vpr, expressed in Escherichia coli and purified by affinity chromatography, formed ion channels in planar lipid bilayers when it was added to the cis chamber and when the trans chamber was held at a negative potential. The channels were more permeable to Na+ than to Cl- ions and were inhibited when the trans potential was made positive. Similar channel activity was caused by Vpr that had a truncated C terminus, but the potential dependence of channel activity was no longer seen. Antibody raised to a peptide mimicking part of the C terminus of Vpr (AbC) inhibited channel activity when added to the trans chamber but had no effect when added to the cis chamber. Antibody to the N terminus of Vpr (AbN) increased channel activity when added to the cis chamber but had no effect when added to the trans chamber. The effects of potential and antibodies on channel activity are consistent with a model in which the positive C-terminal end of dipolar Vpr is induced to traverse the bilayer membrane when the opposite (trans) side of the membrane is at a negative potential. The C terminus of Vpr would then be available for interaction with AbC in the trans chamber, and the N terminus would be available for interaction with AbN in the cis chamber. The ability of Vpr to form ion channels in vitro suggests that channel formation by Vpr in vivo is possible and may be important in the life cycle of human immunodeficiency virus type 1 and/or may cause changes in cells that contribute to AIDS-related pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium ion transiently blocks Na+ channels, and it shortens the time course for closing of their activation gates. We examined the relation between block and closing kinetics by using the Na+ channels natively expressed in GH3 cells, a clonal line of rat pituitary cells. To simplify analysis, inactivation of the Na+ channels was destroyed by including papain in the internal medium. All divalent cations tested, and trivalent La3+, blocked a progressively larger fraction of the channels as their concentration increased, and they accelerated the closing of the Na+ channel activation gate. For calcium, the most extensively studied cation, there is an approximately linear relation between the fraction of the channels that are calcium-blocked and the closing rate. Extrapolation of the data to very low calcium suggests that closing rate is near zero when there is no block. Analysis shows that, almost with certainty, the channels can close when occupied by calcium. The analysis further suggests that the channels close preferentially or exclusively from the calcium-blocked state.