8 resultados para IDA
em National Center for Biotechnology Information - NCBI
Resumo:
The monoclonal a-70-kDa heat shock protein (hsp70) antibody recognizes in crude extracts from watermelon (Citrullus vulgaris) cotyledons two hsps with molecular masses of 70 and 72 kDa. Immunocytochemistry on watermelon cotyledon tissue and on isolated glyoxysomes identified hsp70s in the matrix of glyoxysomes and plastids. Affinity purification and partial amino acid determination revealed the 70-kDa protein to share high sequence identity with cytosolic hsp70s from a number of plant species, while the 72 kDa protein was very similar to plastid hsp70s from pea and cucumber. A full-length cDNA clone encoding the 72-kDa hsp70 was isolated and identified two start methionines in frame within the N-terminal presequence leading either to an N-terminal extension of 67 amino acids or to a shorter one of 47 amino acids. The longer presequence was necessary and sufficient to target a reporter protein into watermelon proplastids in vitro. The shorter extension starting from the second methionine within the long version harbored a consensus peroxisomal targeting signal (RT-X5-KL) that directed in vivo a reporter protein into peroxisomes of the yeast Hansenula polymorpha. Peroxisomal targeting was however prevented, when the 67-residue presequence was fused to the reporter protein, indicating that the peroxisomal targeting signal 2 information is hidden in this context. We propose that the 72-kDa hsp70 is encoded by a single gene, but targeted alternatively into two organelles by the modulated use of its presequence.
Resumo:
There is substantial scientific evidence to support the notion that bovine spongiform encephalopathy (BSE) has contaminated human beings, causing variant Creutzfeldt–Jakob disease (vCJD). This disease has raised concerns about the possibility of an iatrogenic secondary transmission to humans, because the biological properties of the primate-adapted BSE agent are unknown. We show that (i) BSE can be transmitted from primate to primate by intravenous route in 25 months, and (ii) an iatrogenic transmission of vCJD to humans could be readily recognized pathologically, whether it occurs by the central or peripheral route. Strain typing in mice demonstrates that the BSE agent adapts to macaques in the same way as it does to humans and confirms that the BSE agent is responsible for vCJD not only in the United Kingdom but also in France. The agent responsible for French iatrogenic growth hormone-linked CJD taken as a control is very different from vCJD but is similar to that found in one case of sporadic CJD and one sheep scrapie isolate. These data will be key in identifying the origin of human cases of prion disease, including accidental vCJD transmission, and could provide bases for vCJD risk assessment.
Resumo:
The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.
Resumo:
The putative Ca2+-channel blocker LaCl3 prevented the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes (S. Philosoph-Hadas, S. Meir, I. Rosenberger, A.H. Halevy [1996] Plant Physiol 110: 301–310) and inhibited stem curvature to a greater extent than vertical and horizontal stem elongation at the bending zone. This might indicate that LaCl3, which modulates cytosolic Ca2+, does not influence general stem-growth processes but may specifically affect other gravity-associated processes occurring at the stem-bending zone. Two such specific gravity-dependent events were found to occur in the bending zone of snapdragon spikes: sedimentation of starch-containing chloroplasts at the bottom of stem cortex cells, as seen in cross-sections, and establishment of an ethylene gradient across the stem. Our results show that the lateral sedimentation of chloroplasts associated with gravity sensing was prevented in cross-sections taken from the bending zone of LaCl3-treated and subsequently gravistimulated spikes and that LaCl3 completely prevented the gravity-induced, asymmetric ethylene production established across the stem-bending zone. These data indicate that LaCl3 inhibits stem curvature of snapdragon spikes by preventing several gravity-dependent processes. Therefore, we propose that the gravitropic response of shoots could be mediated through a Ca2+-dependent pathway involving modulation of cytosolic Ca2+ at various stages.
Resumo:
Different approaches were utilized to investigate the mechanism by which fusicoccin (FC) induces the activation of the H+-ATPase in plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings treated in vivo with (FC-PM) or without (C-PM) FC. Treatment of FC-PM with different detergents indicated that PM H+-ATPase and the FC-FC-binding-protein (FCBP) complex were solubilized to a similar extent. Fractionation of solubilized FC-PM proteins by a linear sucrose-density gradient showed that the two proteins comigrated and that PM H+-ATPase retained the activated state induced by FC. Solubilized PM proteins were also fractionated by a fast-protein liquid chromatography anion-exchange column. Comparison between C-PM and FC-PM indicated that in vivo treatment of the seedlings with FC caused different elution profiles; PM H+-ATPase from FC-PM was only partially separated from the FC-FCBP complex and eluted at a higher NaCl concentration than did PM H+-ATPase from C-PM. Western analysis of fast-protein liquid chromatography fractions probed with an anti-N terminus PM H+-ATPase antiserum and with an anti-14–3-3 antiserum indicated an FC-induced association of FCBP with the PM H+-ATPase. Analysis of the activation state of PM H+-ATPase in fractions in which the enzyme was partially separated from FCBP suggested that the establishment of an association between the two proteins was necessary to maintain the FC-induced activation of the enzyme.
Resumo:
The Ca2+-ATPase of the plasma membrane (PM) of germinating radish (Raphanus sativus L.) seeds was purified by calmodulin (CaM)-affinity chromatography using a batch procedure. PM purified by aqueous two-phase partitioning was solubilized with n-dodecyl β-d-maltoside and applied to a CaM-agarose matrix. After various washings with decreasing Ca2+ concentrations, the Ca2+-ATPase was eluted with 5 mm ethylenediaminetetraacetate (EDTA). The EDTA-eluted fraction contained about 25% of the loaded Ca2+-ATPase activity, with a specific activity 70-fold higher than that of the starting PM fraction. The EDTA-eluted fraction was highly enriched in a 133-kD polypeptide, which was identified as the PM Ca2+-ATPase by 125I-CaM overlay and fluorescein-isothiocyanate labeling. The PM Ca2+-ATPase cross-reacted with an antiserum against a putative Ca2+-ATPase of the Arabidopsis thaliana chloroplast envelope.