58 resultados para Human-liver
em National Center for Biotechnology Information - NCBI
Resumo:
Glycoproteins expressing the Lutheran blood group antigens were isolated from human erythrocyte membranes and from human fetal liver. Amino acid sequence analyses allowed the design of redundant oligonucleotides that were used to generate a 459-bp, sequence-specific probe by PCR. A cDNA clone of 2400 bp was isolated from a human placental lambda gt 11 library and sequenced, and the deduced amino acid sequence was studied. The predicted mature protein is a type I membrane protein of 597 amino acids with five potential N-glycosylation sites. There are five disulfide-bonded, extracellular, immunoglobulin superfamily domains (two variable-region set and three constant-region set), a single hydrophobic, membrane-spanning domain, and a cytoplasmic domain of 59 residues. The overall structure is similar to that of the human tumor marker MUC 18 and the chicken neural adhesion molecule SC1. The extracellular domains and cytoplasmic domain contain consensus motifs for the binding of integrin and Src homology 3 domains, respectively, suggesting possible receptor and signal-transduction function. Immunostaining of human tissues demonstrated a wide distribution and provided evidence that the glycoprotein is under developmental control in liver and may also be regulated during differentiation in other tissues.
Resumo:
Promoter and silencer elements of the immediate 5' flanking region of the gene coding for human factor VII were identified and characterized. The major transcription start site, designated as +1, was determined by RACE (rapid amplification of cDNA ends) analysis of human liver cDNA and was found to be located 50 bp upstream from the translation start site. Two minor transcription start sites were found at bp +32 bp and +37. Progressive deletions of the 5' flanking region were fused to the chloramphenicol acetyltransferase reporter gene and transient expression in HepG2 and HeLa cells was measured. Two promoter elements that were essential for hepatocyte-specific transcription were identified. The first site, FVIIP1, located at bp -19 to +1, functioned independently of orientation or position and contributed about one-third of the promoter activity of the factor VII gene. Electrophoretic mobility-shift, competition, and anti-hepatocyte nuclear factor 4 (HNF4) antibody supershift experiments demonstrated that this site contained an HNF-4 binding element homologous to the promoters in the genes coding for factor IX and factor X. The second site, FVIIP2, located at bp -50 to -26, also functioned independent of orientation or position and contributed about two thirds of the promoter activity in the gene for factor VII. Functional assays with mutant sequences demonstrated that a 10-bp G + C-rich core sequence which shares 90% sequence identity with the prothrombin gene enhancer was essential for the function of the second site. Mobility-shift and competition assays suggested that this site also binds hepatic-specific factors as well as the transcription factor Sp1. Two silencer elements located upstream of the promoter region spanning bp -130 to -103 (FVIIS1 site) and bp -202 to -130 (FVIIS2) were also identified by reporter gene assays.
Resumo:
Natural killer T (NKT) cells constitute a distinct subpopulation of T cells with a unique antigen specificity, prompt effector functions, and an unusual tissue distribution. NKT cells are especially abundant in the liver, but their physiological function in this organ remains unclear. In the present study, we examined the possible contribution of NKT cells to a murine model of hepatitis induced by i.v. injection of Con A. CD1-deficient mice lacking NKT cells were highly resistant to Con A-induced hepatitis. Adoptive transfer of hepatic NKT cells isolated from wild-type mice, but not from FasL-deficient gld mice, sensitized CD1-deficient mice to Con A-induced hepatitis. Furthermore, adoptive transfer of hepatic mononuclear cells from wild-type mice, but not from CD1-deficient mice, sensitized gld mice to Con A-induced hepatitis. Upon Con A administration, hepatic NKT cells rapidly up-regulated cell surface FasL expression and FasL-mediated cytotoxicity. At the same time, NKT cells underwent apoptosis leading to their rapid disappearance in the liver. These results implicated FasL expression on liver NKT cells in the pathogenesis of Con A-induced hepatitis, suggesting a similar pathogenic role in human liver diseases such as autoimmune hepatitis.
Resumo:
Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the HCV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV). We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host). The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.
Resumo:
The expression of inducible nitric oxide synthase (NOS2) is complex and is regulated in part by gene transcription. In this investigation we studied the regulation of NOS2 in a human liver epithelial cell line (AKN-1) which expresses high levels of NOS2 mRNA and protein in response to tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma (cytokine mix, CM). Nuclear run-on analysis revealed that CM transcriptionally activated the human NOS2 gene. To delineate the cytokine-responsive regions of the human NOS2 promoter, we stimulated AKN-1 cells with CM following transfection of NOS2 luciferase constructs. Analysis of the first 3.8 kb upstream of the NOS2 gene demonstrated basal promoter activity but failed to show any cytokine-inducible activity. However, 3- to 5-fold inductions of luciferase activity were seen in constructs extending up to -5.8 and -7.0 kg, and a 10-fold increase was seen upon transfection of a -16 kb construct. Further analysis of various NOS2 luciferase constructs ligated upstream of the thymidine kinase promoter identified three regions containing cytokine-responsive elements in the human NOS2 gene: -3.8 to -5.8, -5.8 to -7.0, and -7.0 to -16 kb. These results are in marked contrast with the murine macrophage NOS2 promoter in which only 1 kb of the proximal 5' flanking region is necessary to confer inducibility to lipopolysaccharide and interferon gamma. These data demonstrate that the human NOS2 gene is transcriptionally regulated by cytokines and identify multiple cytokine-responsive regions in the 5' flanking region of the human NOS2 gene.
Resumo:
Fatty acid synthase (FAS; EC 2.3.1.85) was purified to near homogeneity from a human hepatoma cell line, HepG2. The HepG2 FAS has a specific activity of 600 nmol of NADPH oxidized per min per mg, which is about half that of chicken liver FAS. All the partial activities of human FAS are comparable to those of other animal FASs, except for the beta-ketoacyl synthase, whose significantly lower activity is attributable to the low 4'-phosphopantetheine content of HepG2 FAS. We cloned the human brain FAS cDNA. The cDNA sequence has an open reading frame of 7512 bp that encodes 2504 amino acids (M(r), 272,516). The amino acid sequence of the human FAS has 79% and 63% identity, respectively, with the sequences of the rat and chicken enzymes. Northern analysis revealed that human FAS mRNA was about 9.3 kb in size and that its level varied among human tissues, with brain, lung, and liver tissues showing prominent expression. The nucleotide sequence of a segment of the HepG2 FAS cDNA (bases 2327-3964) was identical to that of the cDNA from normal human liver and brain tissues, except for a 53-bp sequence (bases 3892-3944) that does not alter the reading frame. This altered sequence is also present in HepG2 genomic DNA. The origin and significance of this sequence variance in the HepG2 FAS gene are unclear, but the variance apparently does not contribute to the lower activity of HepG2 FAS.
Resumo:
Persistent infection with hepatitis B virus (HBV) is a leading cause of human liver disease and is strongly associated with hepatocellular carcinoma, one of the most prevalent forms of human cancer. Apoptosis (programmed cell death) is an important mediator of chronic liver disease caused by HBV infection. It is demonstrated that the HBV HBx protein acutely sensitizes cells to apoptotic killing when expressed during viral replication in cultured cells and in transfected cells independently of other HBV genes. Cells that were resistant to apoptotic killing by high doses of tumor necrosis factor α (TNFα), a cytokine associated with liver damage during HBV infection, were made sensitive to very low doses of TNFα by HBx. HBx induced apoptosis by prolonged stimulation of N-Myc and the stress-mediated mitogen-activated-protein kinase kinase 1 (MEKK1) pathway but not by up-regulating TNF receptors. Cell killing was blocked by inhibiting HBx stimulation of N-Myc or mitogen-activated-protein kinase kinase 1 using dominant-interfering forms or by retargeting HBx from the cytoplasm to the nucleus, which prevents HBx activation of cytoplasmic signal transduction cascades. Treatment of cells with a mitogenic growth factor produced by many virus-induced tumors impaired induction of apoptosis by HBx and TNFα. These results indicate that HBx might be involved in HBV pathogenesis (liver disease) during virus infection and that enhanced apoptotic killing by HBx and TNFα might select for neoplastic hepatocytes that survive by synthesizing mitogenic growth factors.
Resumo:
The microsomal triglyceride (TG) transfer protein (MTP) is a heterodimeric lipid transfer protein that catalyzes the transport of triglyceride, cholesteryl ester, and phosphatidylcholine between membranes. Previous studies showing that the proximal cause of abetalipoproteinemia is an absence of MTP indicate that MTP function is required for the assembly of the apolipoprotein B (apoB) containing plasma lipoproteins, i.e., very low density lipoproteins and chylomicrons. However, the precise role of MTP in lipoprotein assembly is not known. In this study, the role of MTP in lipoprotein assembly is investigated using an inhibitor of MTP-mediated lipid transport, 2-[1-(3, 3-diphenylpropyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-o ne (BMS-200150). The similarity of the IC50 for inhibition of bovine MTP-mediated TG transfer (0.6 microM) to the Kd for binding of BMS-200150 to bovine MTP (1.3 microM) strongly supports that the inhibition of TG transfer is the result of a direct effect of the compound on MTP. BMS-200150 also inhibits the transfer of phosphatidylcholine, however to a lesser extent (30% at a concentration that almost completely inhibits TG and cholesteryl ester transfer). When BMS-200150 is added to cultured HepG2 cells, a human liver-derived cell line that secretes apoB containing lipoproteins, it inhibits apoB secretion in a concentration dependent manner. These results support the hypothesis that transport of lipid, and in particular, the transport of neutral lipid by MTP, plays a critical role in the assembly of apoB containing lipoproteins.
Resumo:
A plant class III alcohol dehydrogenase (or glutathione-dependent formaldehyde dehydrogenase) has been characterized. The enzyme is a typical class III member with enzymatic parameters and substrate specificity closely related to those of already established animal forms. Km values with the pea enzyme are 6.5 microM for NAD+, 2 microM for S-hydroxymethylglutathione, and 840 microM for octanol versus 9, 4, and 1200 microM, respectively, with the human enzyme. Structurally, the pea/human class III enzymes are closely related, exhibiting a residue identity of 69% and with only 3 of 23 residues differing among those often considered in substrate and coenzyme binding. In contrast, the corresponding ethanol-active enzymes, the long-known human liver and pea alcohol dehydrogenases, differ more (47% residue identities) and are also in functionally important active site segments, with 12 of the 23 positions exchanged, including no less than 7 at the usually much conserved coenzyme-binding segment. These differences affect functionally important residues that are often class-distinguishing, such as those at positions 48, 51, and 115, where the plant ethanol-active forms resemble class III (Thr, Tyr, and Arg, respectively) rather than the animal ethanol-active class I forms (typically Ser, His, and Asp, respectively). Calculations of phylogenetic trees support the conclusions from functional residues in subgrouping plant ethanol-active dehydrogenases and the animal ethanol-active enzymes (class I) as separate descendants from the class III line. It appears that the classical plant alcohol dehydrogenases (now called class P) have a duplicatory origin separate from that of the animal class I enzymes and therefore a paralogous relationship with functional convergence of their alcohol substrate specificity. Combined, the results establish the conserved nature of class III also in plants, and contribute to the molecular and functional understanding of alcohol dehydrogenases by defining two branches of plant enzymes into the system.
Resumo:
This paper describes the use of the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) as a vector for gene delivery into mammalian cells. A modified AcMNPV virus was prepared that carried the Escherichia coli lacZ reporter gene under control of the Rous sarcoma virus promoter and mammalian RNA processing signals. This modified baculovirus was then used to infect a variety of mammalian cell lines. After infection of the human liver cell lines HepG2, >25% of the cells showed high-level expression of the transduced gene. Over 70% of the cells in primary cultures of rat hepatocytes showed expression of beta-galactosidase after exposure to the virus. Cell lines from other tissues showed less or no expression of lacZ after exposure to the virus. The block to expression in less susceptible cells does not appear to result from the ability to be internalized by the target cell but rather by events subsequent to viral entry. The onset of lacZ expression occurred within 6 hr of infection in HepG2 cells and peaked 12-24 hr postinfection. Because AcMNPV is able to replicate only in insect hosts, is able to carry large (>15 kb) inserts, and is a highly effective gene delivery vehicle for primary cultures of hepatocytes, AcMNPV may be a useful vector for genetic manipulation of liver cells.
Resumo:
An experimental strategy to facilitate correction of single-base mutations of episomal targets in mammalian cells has been developed. The method utilizes a chimeric oligonucleotide composed of a contiguous stretch of RNA and DNA residues in a duplex conformation with double hairpin caps on the ends. The RNA/DNA sequence is designed to align with the sequence of the mutant locus and to contain the desired nucleotide change. Activity of the chimeric molecule in targeted correction was tested in a model system in which the aim was to correct a point mutation in the gene encoding the human liver/bone/kidney alkaline phosphatase. When the chimeric molecule was introduced into cells containing the mutant gene on an extrachromosomal plasmid, correction of the point mutation was accomplished with a frequency approaching 30%. These results extend the usefulness of the oligonucleotide-based gene targeting approaches by increasing specific targeting frequency. This strategy should enable the design of antiviral agents.
Resumo:
The mutagenic activity of the major DNA adduct formed by the liver carcinogen aflatoxin B1 (AFB1) was investigated in vivo. An oligonucleotide containing a single 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua) adduct was inserted into the single-stranded genome of bacteriophage M13. Replication in SOS-induced Escherichia coli yielded a mutation frequency for AFB1-N7-Gua of 4%. The predominant mutation was G --> T, identical to the principal mutation in human liver tumors believed to be induced by aflatoxin. The G --> T mutations of AFB1-N7-Gua, unlike those (if the AFB1-N7-Gua-derived apurinic site, were much more strongly dependent on MucAB than UmuDC, a pattern matching that in intact cells treated with the toxin. It is concluded that the AFB1-N7-Gua adduct, and not the apurinic site, has genetic requirements for mutagenesis that best explain mutations in aflatoxin-treated cells. While most mutations were targeted to the site of the lesion, a significant fraction (13%) occurred at the base 5' to the modified guanine. In contrast, the apurinic site-containing genome gave rise only to targeted mutations. The mutational asymmetry observed for AFB1-N7-Gua is consistent with structural models indicating that the aflatoxin moiety of the aflatoxin guanine adduct is covalently intercalated on the 5' face of the guanine residue. These results suggest a molecular mechanism that could explain an important step in the carcinogenicity of aflatoxin B1.
Resumo:
In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues.
Resumo:
To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.