173 resultados para Human Neuronal Protein
em National Center for Biotechnology Information - NCBI
Resumo:
Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/macrophages under the control of the colony stimulating factor-1 receptor promoter. Transgenic macrophages infiltrated and resided in all organs and expressed PPCA at high levels. Correction occurred in hematopoietic tissues and nonhematopoietic organs, including the central nervous system. PPCA-expressing perivascular and leptomeningeal macrophages were detected throughout the brain of recipient mice, although some neuronal cells, such as Purkinje cells, continued to show storage and died. GS mice crossed into the transgenic background reflected the outcome of bone marrow-transplanted mice, but the course of neuronal degeneration was delayed in this model. These studies present definite evidence that macrophages alone can provide a source of corrective enzyme for visceral organs and may be beneficial for neuronal correction if expression levels are sufficient.
Resumo:
Mutations in the recently identified presenilin 1 gene on chromosome 14 cause early onset familial Alzheimer disease (FAD). Herein we describe the expression and analysis of the protein coded by presenilin 1 (PS1) in NT2N neurons, a human neuronal model system. PS1 was expressed using recombinant Semliki Forest virions and detected by introduced antigenic tags or antisera to PS1-derived peptides. Immunoprecipitation revealed two major PS1 bands of approximately 43 and 50 kDa, neither of which were N-glycosylated or O-glycosylated. Immunoreactive PS1 was detected in cell bodies and dendrites of NT2N neurons but not in axons or on the cell surface. PS1 was also detected in BHK cells, where it was also intracellular and colocalized with calnexin, a marker for the rough endoplasmic reticulum. A mutant form of PS1 linked to FAD did not differ from the wild-type protein at the light microscopic level. The model system described here will enable studies of the function of PS1 in human neurons and the role of mutant PS1 in FAD.
Resumo:
The structural maintenance of chromosomes (SMC) family member proteins previously were shown to play a critical role in mitotic chromosome condensation and segregation in yeast and Xenopus. Other family members were demonstrated to be required for DNA repair in yeast and mammals. Although several different SMC proteins were identified in different organisms, little is known about the SMC proteins in humans. Here, we report the identification of four human SMC proteins that form two distinct heterodimeric complexes in the cell, the human chromosome-associated protein (hCAP)-C and hCAP-E protein complex (hCAP-C/hCAP-E), and the human SMC1 (hSMC1) and hSMC3 protein complex (hSMC1/hSMC3). The hCAP-C/hCAP-E complex is the human ortholog of the Xenopus chromosome-associated protein (XCAP)-C/XCAP-E complex required for mitotic chromosome condensation. We found that a second complex, hSMC1/hSMC3, is required for metaphase progression in mitotic cells. Punctate vs. diffuse distribution patterns of the hCAP-C/hCAP-E and hSMC1/hSMC3 complexes in the interphase nucleus indicate independent behaviors of the two complexes during the cell cycle. These results suggest that two distinct classes of SMC protein complexes are involved in different aspects of mitotic chromosome organization in human cells.
Resumo:
The NMR structures of the recombinant human prion protein, hPrP(23–230), and two C-terminal fragments, hPrP(90–230) and hPrP(121–230), include a globular domain extending from residues 125–228, for which a detailed structure was obtained, and an N-terminal flexibly disordered “tail.” The globular domain contains three α-helices comprising the residues 144–154, 173–194, and 200–228 and a short anti-parallel β-sheet comprising the residues 128–131 and 161–164. Within the globular domain, three polypeptide segments show increased structural disorder: i.e., a loop of residues 167–171, the residues 187–194 at the end of helix 2, and the residues 219–228 in the C-terminal part of helix 3. The local conformational state of the polypeptide segments 187–193 in helix 2 and 219–226 in helix 3 is measurably influenced by the length of the N-terminal tail, with the helical states being most highly populated in hPrP(23–230). When compared with the previously reported structures of the murine and Syrian hamster prion proteins, the length of helix 3 coincides more closely with that in the Syrian hamster protein whereas the disordered loop 167–171 is shared with murine PrP. These species variations of local structure are in a surface area of the cellular form of PrP that has previously been implicated in intermolecular interactions related both to the species barrier for infectious transmission of prion disease and to immune reactions.
Resumo:
The NMR structures of three single-amino acid variants of the C-terminal domain of the human prion protein, hPrP(121–230), are presented. In hPrP(M166V) and hPrP(R220K) the substitution is with the corresponding residue in murine PrP, and in hPrP(S170N) it is with the corresponding Syrian hamster residue. All three substitutions are in the surface region of the structure of the cellular form of PrP (PrPC) that is formed by the C-terminal part of helix 3, with residues 218–230, and a loop of residues 166–172. This molecular region shows high species variability and has been implicated in specific interactions with a so far not further characterized “protein X,” and it is related to the species barrier for transmission of prion diseases. As expected, the three variant hPrP(121–230) structures have the same global architecture as the previously determined wild-type bovine, human, murine, and Syrian hamster prion proteins, but with the present study two localized “conformational markers” could be related with single amino acid exchanges. These are the length and quality of definition of helix 3, and the NMR-observability of the residues in the loop 166–172. Poor definition of the C-terminal part of helix 3 is characteristic for murine PrP and has now been observed also for hPrP(R220K), and NMR observation of the complete loop 166–172 has so far been unique for Syrian hamster PrP and is now also documented for hPrP(S170N).
Resumo:
Replication protein A (RPA), the nuclear single-stranded DNA binding protein is involved in DNA replication, nucleotide excision repair (NER) and homologous recombination. It is a stable heterotrimer consisting of subunits with molecular masses of 70, 32 and 14 kDa (p70, p32 and p14, respectively). Gapped DNA structures are common intermediates during DNA replication and NER. To analyze the interaction of RPA and its subunits with gapped DNA we designed structures containing 9 and 30 nucleotide gaps with a photoreactive arylazido group at the 3′-end of the upstream oligonucleotide or at the 5′-end of the downstream oligonucleotide. UV crosslinking and subsequent analysis showed that the p70 subunit mainly interacts with the 5′-end of DNA irrespective of DNA structure, while the subunit orientation towards the 3′-end of DNA in the gap structures strongly depends on the gap size. The results are compared with the data obtained previously with the primer–template systems containing 5′- or 3′-protruding DNA strands. Our results suggest a model of polar RPA binding to the gapped DNA.
Resumo:
The human nucleotide pool sanitization enzyme, MTH1, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dATP in addition to 8-hydroxy-dGTP. We report here that human MTH1 is highly specific for 2-hydroxy-ATP, among the cognate ribonucleoside triphosphates. The pyrophosphatase activities for 8-hydroxy-GTP, 2-hydroxy-ATP and 8-hydroxy-ATP were measured by high-performance liquid chromatography. The kinetic parameters thus obtained indicate that the catalytic efficiencies of MTH1 are in the order of 2-hydroxy-dATP > 2-hydroxy-ATP > 8-hydroxy-dGTP > 8-hydroxy-dATP >> dGTP > 8-hydroxy-GTP > 8-hydroxy-ATP. Notably, MTH1 had the highest affinity for 2-hydroxy-ATP among the known substrates. ATP is involved in energy metabolism and signal transduction, and is a precursor in RNA synthesis. We suggest that the 2-hydroxy-ATP hydrolyzing activity of MTH1 might prevent the perturbation of these ATP-related pathways by the oxidized ATP.
Resumo:
The human brm (hbrm) protein (homologue of the Drosophila melanogaster brahma and Saccharomyces cervisiae SNF-2 proteins) is part of a polypeptide complex believed to regulate chromatin conformation. We have shown that the hbrm protein is cleaved in NB4 leukemic cells after induction of apoptosis by UV-irradiation, DNA damaging agents, or staurosporine. Because hbrm is found only in the nucleus, we have investigated the nature of the proteases that may regulate the degradation of this protein during apoptosis. In an in vitro assay, the hbrm protein could not be cleaved by caspase-3, -7, or -6, the “effector” caspases generally believed to carry out the cleavage of nuclear protein substrates. In contrast, we find that cathepsin G, a granule enzyme found in NB4 cells, cleaves hbrm in a pattern similar to that observed in vivo during apoptosis. In addition, a peptide inhibitor of cathepsin G blocks hbrm cleavage during apoptosis but does not block activation of caspases or cleavage of the nuclear protein polyADP ribose polymerase (PARP). Although localized in granules and in the Golgi complex in untreated cells, cathepsin G becomes diffusely distributed during apoptosis. Cleavage by cathepsin G removes a 20-kDa fragment containing a bromodomain from the carboxyl terminus of hbrm. This cleavage disrupts the association between hbrm and the nuclear matrix; the 160-kDa hbrm cleavage fragment is less tightly associated with the nuclear matrix than full-length hbrm.
Resumo:
Many persistent viruses have evolved the ability to subvert MHC class I antigen presentation. Indeed, human cytomegalovirus (HCMV) encodes at least four proteins that down-regulate cell-surface expression of class I. The HCMV unique short (US)2 glycoprotein binds newly synthesized class I molecules within the endoplasmic reticulum (ER) and subsequently targets them for proteasomal degradation. We report the crystal structure of US2 bound to the HLA-A2/Tax peptide complex. US2 associates with HLA-A2 at the junction of the peptide-binding region and the α3 domain, a novel binding surface on class I that allows US2 to bind independently of peptide sequence. Mutation of class I heavy chains confirms the importance of this binding site in vivo. Available data on class I-ER chaperone interactions indicate that chaperones would not impede US2 binding. Unexpectedly, the US2 ER-luminal domain forms an Ig-like fold. A US2 structure-based sequence alignment reveals that seven HCMV proteins, at least three of which function in immune evasion, share the same fold as US2. The structure allows design of further experiments to determine how US2 targets class I molecules for degradation.
Resumo:
Human Dmc1 protein, a meiosis-specific homolog of Escherichia coli RecA protein, has previously been shown to promote DNA homologous pairing and strand-exchange reactions that are qualitatively similar to those of RecA protein and Rad51. Human and yeast Rad51 proteins each form a nucleoprotein filament that is very similar to the filament formed by RecA protein. However, recent studies failed to find a similar filament made by Dmc1 but showed instead that this protein forms octameric rings and stacks of rings. These observations stimulated further efforts to elucidate the mechanism by which Dmc1 promotes the recognition of homology. Dmc1, purified to a state in which nuclease and helicase activities were undetectable, promoted homologous pairing and strand exchange as measured by fluorescence resonance energy transfer (FRET). Observations on the intermediates and products, which can be distinguished by FRET assays, provided direct evidence of a three-stranded synaptic intermediate. The effects of helix stability and mismatched base pairs on the recognition of homology revealed further that human Dmc1, like human Rad51, requires the preferential breathing of A⋅T base pairs for recognition of homology. We conclude that Dmc1, like human Rad51 and E. coli RecA protein, promotes homologous pairing and strand exchange by a “synaptic pathway” involving a three-stranded nucleoprotein intermediate, rather than by a “helicase pathway” involving the separation and reannealing of DNA strands.
Resumo:
Although a functional role in copper binding has been suggested for the prion protein, evidence for binding at affinities characteristic of authentic metal-binding proteins has been lacking. By presentation of copper(II) ions in the presence of the weak chelator glycine, we have now characterized two high-affinity binding sites for divalent transition metals within the human prion protein. One is in the N-terminal octapeptide-repeat segment and has a Kd for copper(II) of 10−14 M, with other metals (Ni2+, Zn2+, and Mn2+) binding three or more orders of magnitude more weakly. However, NMR and fluorescence data reveal a previously unreported second site around histidines 96 and 111, a region of the molecule known to be crucial for prion propagation. The Kd for copper(II) at this site is 4 × 10−14 M, whereas nickel(II), zinc(II), and manganese(II) bind 6, 7, and 10 orders of magnitude more weakly, respectively, regardless of whether the protein is in its oxidized α-helical (α-PrP) or reduced β-sheet (β-PrP) conformation. A role for prion protein (PrP) in copper metabolism or transport seems likely and disturbance of this function may be involved in prion-related neurotoxicity.
Resumo:
Centromere proteins are localized within the centromere-kinetochore complex, which can be proven by means of immunofluorescence microscopy and immunoelectron microscopy. In consequence, their putative functions seem to be related exclusively to mitosis, namely to the interaction of the chromosomal kinetochores with spindle microtubules. However, electron microscopy using immune sera enriched with specific antibodies against human centromere protein C (CENP-C) showed that it occurs not only in mitosis but during the whole cell cycle. Therefore, we investigated the cell cycle-specific expression of CENP-C systematically on protein and mRNA levels applying HeLa cells synchronized in all cell cycle phases. Immunoblotting confirmed protein expression during the whole cell cycle and revealed an increase of CENP-C from the S phase through the G2 phase and mitosis to highest abundance in the G1 phase. Since this was rather surprising, we verified it by quantifying phase-specific mRNA levels of CENP-C, paralleled by the amplification of suitable internal standards, using the polymerase chain reaction. The results were in excellent agreement with abundant protein amounts and confirmed the cyclic behavior of CENP-C during the cell cycle. In consequence, we postulate that in addition to its role in mitosis, CENP-C has a further role in the G1 phase that may be related to cell cycle control.
Resumo:
Human CAS cDNA contains a 971-aa open reading frame that is homologous to the essential yeast gene CSE1. CSE1 is involved in chromosome segregation and is necessary for B-type cyclin degradation in mitosis. Using antibodies to CAS, it was shown that CAS levels are high in proliferating and low in nonproliferating cells. Here we describe the distribution of CAS in cells and tissues analyzed with antibodies against CAS. CAS is an approximately 100-kDa protein present in the cytoplasm of proliferating cells at levels between 2 x 10(5) and 1 x 10(6) molecules per cell. The intracellular distribution of CAS resembles that of tubulin. In interphase cells, anti-CAS antibody shows microtubule-like patterns and in mitotic cells it labels the mitotic spindle. CAS is removed from microtubules by mild detergent treatment (cytoskeleton preparations) and in vincristine- or taxol-treated cells. CAS is diffusely distributed in the cytoplasm with only traces present in tubulin paracrystals or bundles. Thus, CAS appears to be associated with but not to be an integral part of microtubules. Immunohistochemical staining of frozen tissues shows elevated amounts of CAS in proliferating cells such as testicular spermatogonia and cells in the basal layer cells of the colon. CAS was also concentrated in the respiratory epithelium of the trachea and in axons and Purkinje cells in the cerebellum. These cells contain many microtubules. The cellular location of CAS is consistent with an important role in cell division as well as in ciliary movement and vesicular transport.
Resumo:
We report the three-dimensional structure of osteogenic protein 1 (OP-1, also known as bone morphogenetic protein 7) to 2.8-A resolution. OP-1 is a member of the transforming growth factor beta (TGF-beta) superfamily of proteins and is able to induce new bone formation in vivo. Members of this superfamily share sequence similarity in their C-terminal regions and are implicated in embryonic development and adult tissue repair. Our crystal structure makes possible the structural comparison between two members of the TGF-beta superfamily. We find that although there is limited sequence identity between OP-1 and TGF-beta 2, they share a common polypeptide fold. These results establish a basis for proposing the OP-1/TGF-beta 2 fold as the primary structural motif for the TGF-beta superfamily as a whole. Detailed comparison of the OP-1 and TGF-beta 2 structures has revealed striking differences that provide insights into how these growth factors interact with their receptors.
Resumo:
To the breast-fed infant, human milk is more than a source of nutrients; it furnishes a wide array of molecules that restrict microbes, such as antibodies, bactericidins, and inhibitors of bacterial adherence. However, it has rarely been considered that human milk may also contain substances bioactive toward host cells. While investigating the effect of human milk on bacterial adherence to a human lung cancer cell line, we were surprised to discover that the milk killed the cells. Analysis of this effect revealed that a component of milk in a particular physical state--multimeric alpha-lact-albumin--is a potent Ca(2+)-elevating and apoptosis-inducing agent with broad, yet selective, cytotoxic activity. Multimeric alpha-lactalbumin killed all transformed, embryonic, and lymphoid cells tested but spared mature epithelial elements. These findings raise the possibility that milk contributes to mucosal immunity not only by furnishing antimicrobial molecules but also by policing the function of lymphocytes and epithelium. Finally, analysis of the mechanism by which multimeric alpha-lactalbumin induces apoptosis in transformed epithelial cells could lead to the design of antitumor agents.