12 resultados para Host defence peptide
em National Center for Biotechnology Information - NCBI
Resumo:
Tumor necrosis factor α (TNFα) acts as a beneficial mediator in the process of host defence. In recent years major interest has focused on the AU-rich elements (AREs) present in the 3′-untranslated region (3′-UTR) of TNFα mRNA as this region plays a pivotal role in post-transcriptional control of TNFα production. Certain stimuli, such as lipopolysaccharides, a component of the Gram-negative bacterial cell wall, have the ability to relinquish the translational suppression of TNFα mRNA imposed by these AREs in macrophages, thereby enabling the efficient production of the TNFα. In this study we show that the polymorphism (GAU trinucleotide insertional mutation) present in the regulatory 3′-UTR of TNFα mRNA of NZW mice results in the hindered binding of RNA-binding proteins, thereby leading to a significantly reduced production of TNFα protein. We also show that the binding of macrophage proteins to the main ARE is also decreased by another trinucleotide (CAU) insertion in the TNFα 3′-UTR. One of the proteins affected by the GAU trinucleotide insertional mutation was identified as HuR, a nucleo-cytoplasmic shuttling protein previously shown to play a prominent role in the stability and translatability of mRNA containing AREs. Since binding of this protein most likely modulates the stability, translational efficiency and transport of TNFα mRNA, these results suggest that mutations in the ARE of TNFα mRNA decrease the production of TNFα protein in macrophages by hindering the binding of HuR to the ARE.
Resumo:
Insects respond to microbial infection by the rapid and transient expression of several genes encoding potent antimicrobial peptides. Herein we demonstrate that this antimicrobial response of Drosophila is not aspecific but can discriminate between various classes of microorganisms. We first observe that the genes encoding antibacterial and antifungal peptides are differentially expressed after injection of distinct microorganisms. More strikingly, Drosophila that are naturally infected by entomopathogenic fungi exhibit an adapted response by producing only peptides with antifungal activities. This response is mediated through the selective activation of the Toll pathway.
Resumo:
Vaccinia uses actin-based motility for virion movement in host cells, but the specific protein components have yet to be defined. A cardinal feature of Listeria and Shigella actin-based motility is the involvement of vasodilator-stimulated phosphoprotein (VASP). This essential adapter recognizes and binds to actin-based motility 1 (ABM-1) consensus sequences [(D/E)FPPPPX(D/E), X = P or T] contained in Listeria ActA and in the p90 host-cell vinculin fragment generated by Shigella infection. VASP, in turn, provides the ABM-2 sequences [XPPPPP, X = G, P, L, S, A] for binding profilin, an actin-regulatory protein that stimulates actin filament assembly. Immunolocalization using rabbit anti-VASP antibody revealed that VASP concentrates behind motile virions in HeLa cells. Profilin was also present in these actin-rich rocket tails, and microinjection of 10 μM (intracellular) ABM-2 peptide (GPPPPP)3 blocked vaccinia actin-based motility. Vinculin did not colocalize with VASP on motile virions and remained in focal adhesion contacts; however, another ABM-1-containing host protein, zyxin, was concentrated at the rear of motile virions. We also examined time-dependent changes in the location of these cytoskeletal proteins during vaccinia infection. VASP and zyxin were redistributed dramatically several hours before the formation of actin rocket tails, concentrating in the viral factories of the perinuclear cytoplasm. Our findings underscore the universal involvement of ABM-1 and ABM-2 docking sites in actin-based motility of Listeria, Shigella, and now vaccinia.
Resumo:
Insects defend themselves against infectious microorganisms by synthesizing potent antimicrobial peptides. Drosophila has appeared in recent years as a favorable model to study this innate host defense. A genetic analysis of the regulation of the antifungal peptide drosomycin has demonstrated a key role for the transmembrane receptor Toll, which prompted the search for mammalian homologs. Two of these, Toll-like receptor (TLR)2 and TLR4, recently were shown to play a critical role in innate immunity against bacteria. Here we describe six additional Toll-related genes (Toll-3 to Toll-8) in Drosophila in addition to 18-wheeler. Two of these genes, Toll-3 and Toll-4, are expressed at a low level. Toll-6, -7, and -8, on the other hand, are expressed at high levels during embryogenesis and molting, suggesting that, like Toll and 18w, they perform developmental functions. Finally, Toll-5 is expressed only in larvae and adults. By using chimeric constructs, we have tested the capacity of the signaling Toll/IL-1R homology domains of these receptors to activate antimicrobial peptide promoters and found that only Toll and Toll-5 can activate the drosomycin promoter in transfected cells, thus demonstrating specificity at the level of the Toll/IL-1R homology domain. In contrast, none of these constructs activated antibacterial peptide promoters, suggesting that Toll-related receptors are not involved in the regulation of antibacterial peptide expression. This result was independently confirmed by the demonstration that a dominant-negative version of the kinase Pelle can block induction of drosomycin by the cytokine Spaetzle, but does not affect induction of the antibacterial peptide attacin by lipopolysaccharide.
Resumo:
Schistosome parasites adjust the physiology and behavior of their intermediate molluscan hosts to their own benefit. Previous studies demonstrated effects of the avian-schistosome Trichobilharzia ocellata on peptidergic centers in the brain of the intermediate snail host Lymnaea stagnalis. In particular, electrophysiological properties and peptide release of growth- and reproduction-controlling neuroendocrine neurons were affected. We now have examined the possibility that the expression of genes that control physiology and behavior of the host might be altered during parasitosis. A cDNA library of the brain of parasitized Lymnaea was constructed and differentially screened by using mRNA from the brain of both parasitized and nonparasitized snails. This screening yielded a number of clones, including previously identified cDNAs as well as novel neuronal transcripts, which appear to be differentially regulated. The majority of these transcripts encode neuropeptides. Reverse Northern blot analysis confirmed that neuropeptide gene expression is indeed affected in parasitized animals. Moreover, the expression profiles of 10 transcripts tested showed a differential, parasitic stage-specific regulation. Changes in expression could in many cases already be observed between 1.5 and 5 hr postinfection, suggesting that changes in gene expression are a direct effect of parasitosis. We suggest that direct regulation of neuropeptide gene expression is a strategy of parasites to induce physiological and behavioral changes in the host.
Resumo:
Pathogenic bacteria rely on adhesins to bind to host tissues. Therefore, the maintenance of the functional properties of these extracellular macromolecules is essential for the pathogenicity of these microorganisms. We report that peptide methionine sulfoxide reductase (MsrA), a repair enzyme, contributes to the maintenance of adhesins in Streptococcus pneumoniae, Neisseria gonorrhoeae, and Escherichia coli. A screen of a library of pneumococcal mutants for loss of adherence uncovered a MsrA mutant with 75% reduced binding to GalNAcbeta1-4Gal containing eukaryotic cell receptors that are present on type II lung cells and vascular endothelial cells. Subsequently, it was shown that an E. coli msrA mutant displayed decreased type I fimbriae-mediated, mannose-dependent, agglutination of erythrocytes. Previous work [Taha, M. K., So, M., Seifert, H. S., Billyard, E. & Marchal, C. (1988) EMBO J. 7, 4367-4378] has shown that mutants with defects in the pilA-pilB locus from N. gonorrhoeae were altered in their production of type IV pili. We show that pneumococcal MsrA and gonococcal PilB expressed in E. coli have MsrA activity. Together these data suggest that MsrA is required for the proper expression or maintenance of functional adhesins on the surfaces of these three major pathogenic bacteria.
Resumo:
Reactive oxygen intermediates generated by the phagocyte NADPH oxidase are critically important components of host defense. However, these highly toxic oxidants can cause significant tissue injury during inflammation; thus, it is essential that their generation and inactivation are tightly regulated. We show here that an endogenous proline-arginine (PR)-rich antibacterial peptide, PR-39, inhibits NADPH oxidase activity by blocking assembly of this enzyme through interactions with Src homology 3 domains of a cytosolic component. This neutrophil-derived peptide inhibited oxygen-dependent microbicidal activity of neutrophils in whole cells and in a cell-free assay of NADPH oxidase. Both oxidase inhibitory and direct antimicrobial activities were defined within the amino-terminal 26 residues of PR-39. Oxidase inhibition was attributed to binding of PR-39 to the p47phox cytosolic oxidase component. Its effects involve both a polybasic amino-terminal segment and a proline-rich core region of PR-39 that binds to the p47phox Src homology 3 domains and, thereby, inhibits interaction with the small subunit of cytochrome b558, p22phox. These findings suggest that PR-39, which has been shown to be involved in tissue repair processes, is a multifunctional peptide that can regulate NADPH oxidase production of superoxide anion O2-. thus limiting excessive tissue damage during inflammation.
Resumo:
Mammals continually confront microbes at mucosal surfaces. A current model suggests that epithelial cells contribute to defense at these sites, in part through the production of broad-spectrum antibiotic peptides. Previous studies have shown that invertebrates can mount a host defense response characterized by the induction in epithelia] cells of a variety of antibiotic proteins and peptides when they are challenged with microorganisms, bacterial cell wall/membrane components, or traumatic injury [Boman, H.G. & Hultmark, D. (1987) Annu. Rev. Microbiol. 41, 103-126J. However, factors that govern the expression of similar defense molecules in mammalian epithelial cells are poorly understood. Here, a 13-fold induction of the endogenous gene encoding tracheal antimicrobial peptide was found to characterize a host response of tracheal epithelia] cells (TECs) exposed to bacterial lipopolysaccharide (LPS). Northern blot data indicated that TECs express CD14, a well-characterized LPS-binding protein known to mediate many LPS responses. A monoclonal antibody to CD14 blocked the observed tracheal antimicrobial peptide induction by LPS under serum-free conditions. Together the data support that CD14 of epithelial cell origin mediates the LPS induction of an antibiotic peptide gene in TECs, providing evidence for the active participation of epithelial cells in the host's local defense response to bacteria. Furthermore, the data allude to a conservation of this host response in evolution and suggest that a similar inducible pathway of host defense is prevalent at mucosal surfaces of mammals.
Resumo:
Since ribosomally mediated protein biosynthesis is confined to the L-amino acid pool, the presence of D-amino acids in peptides was considered for many years to be restricted to proteins of prokaryotic origin. Unicellular microorganisms have been responsible for the generation of a host of D-amino acid-containing peptide antibiotics (gramicidin, actinomycin, bacitracin, polymyxins). Recently, a series of mu and delta opioid receptor agonists [dermorphins and deltorphins] and neuroactive tetrapeptides containing a D-amino acid residue have been isolated from amphibian (frog) skin and mollusks. Amino acid sequences obtained from the cDNA libraries coincide with the observed dermorphin and deltorphin sequences, suggesting a stereospecific posttranslational amino acid isomerization of unknown mechanism. A cofactor-independent serine isomerase found in the venom of the Agelenopsis aperta spider provides the first major clue to explain how multicellular organisms are capable of incorporating single D-amino acid residues into these and other eukaryotic peptides. The enzyme is capable of isomerizing serine, cysteine, O-methylserine, and alanine residues in the middle of peptide chains, thereby providing a biochemical capability that, until now, had not been observed. Both D- and L-amino acid residues are susceptible to isomerization. The substrates share a common Leu-Xaa-Phe-Ala recognition site. Early in the reaction sequence, solvent-derived deuterium resides solely with the epimerized product (not substrate) in isomerizations carried out in 2H2O. Significant deuterium isotope effects are obtained in these reactions in addition to isomerizations of isotopically labeled substrates (2H at the epimerizeable serine alpha-carbon atom). The combined kinetic and structural data suggests a two-base mechanism in which abstraction of a proton from one face is concomitant with delivery from the opposite face by the conjugate acid of the second enzymic base.
Resumo:
The solvation energies of salt bridges formed between the terminal carboxyl of the host pentapeptide AcWL- X-LL and the side chains of Arg or Lys in the guest (X) position have been measured. The energies were derived from octanol-to-buffer transfer free energies determined between pH 1 and pH 9. 13C NMR measurements show that the salt bridges form in the octanol phase, but not in the buffer phase, when the side chains and the terminal carboxyl group are charged. The free energy of salt-bridge formation in octanol is approximately -4 kcal/mol (1 cal = 4.184 J), which is equal to or slightly larger than the sum of the solvation energies of noninteracting pairs of charged side chains. This is about one-half the free energy that would result from replacing a charge pair in octanol with a pair of hydrophobic residues of moderate size. Therefore, salt bridging in octanol can change the favorable aqueous solvation energy of a pair of oppositely charged residues to neutral or slightly unfavorable but cannot provide the same free energy decrease as hydrophobic residues. This is consistent with recent computational and experimental studies of protein stability.
Resumo:
In this paper we report a recessive mutation, immune deficiency (imd), that impairs the inducibility of all genes encoding antibacterial peptides during the immune response of Drosophila. When challenged with bacteria, flies carrying this mutation show a lower survival rate than wild-type flies. We also report that, in contrast to the antibacterial peptides, the antifungal peptide drosomycin remains inducible in a homozygous imd mutant background. These results point to the existence of two different pathways leading to the expression of two types of target genes, encoding either the antibacterial peptides or the antifungal peptide drosomycin.
Resumo:
Human melanoma cells can process the MAGE-1 gene product and present the processed nonapeptide EADPTGHSY on their major histocompatibility complex class I molecules, HLA-A1, as a determinant for cytolytic T lymphocytes (CTLs). Considering that autologous antigen presenting cells (APCs) pulsed with the synthetic nonapeptide might, therefore, be immunogenic, melanoma patients whose tumor cells express the MAGE-1 gene and who are HLA-A1+ were immunized with a vaccine made of cultured autologous APCs pulsed with the synthetic nonapeptide. Analyses of the nature of the in vivo host immune response to the vaccine revealed that the peptide-pulsed APCs are capable of inducing autologous melanoma-reactive and the nonapeptide-specific CTLs in situ at the immunization site and at distant metastatic disease sites.