183 resultados para Homozygous mutation
em National Center for Biotechnology Information - NCBI
Resumo:
beta-Oxidation of long-chain fatty acids provides the major source of energy in the heart. Defects in enzymes of the beta-oxidation pathway cause sudden, unexplained death in childhood, acute hepatic encephalopathy or liver failure, skeletal myopathy, and cardiomyopathy. Very-long-chain acyl-CoA dehydrogenase [VLCAD; very-long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase, EC 1.3.99.13] catalyzes the first step in beta-oxidation. We have isolated the human VLCAD cDNA and gene and determined the complete nucleotide sequences. Polymerase chain reaction amplification of VLCAD mRNA and genomic exons defined the molecular defects in two patients with VLCAD deficiency who presented with unexplained cardiac arrest and cardiomyopathy. In one, a homozygous mutation in the consensus dinucleotide of the donor splice site (g+1-->a) was associated with universal skipping of the prior exon (exon 11). The second patient was a compound heterozygote, with a missense mutation, C1837-->T, changing the arginine at residue 613 to tryptophan on one allele and a single base deletion at the intron-exon 6 boundary as the second mutation. This initial delineation of human mutations in VLCAD suggests that VLCAD deficiency reduces myocardial fatty acid beta-oxidation and energy production and is associated with cardiomyopathy and sudden death in childhood.
Resumo:
Scavenger receptor BI (SR-BI) is a cell surface receptor that binds high density lipoproteins (HDL) and mediates selective uptake of HDL cholesteryl esters (CE) in transfected cells. To address the physiological role of SR-BI in HDL cholesterol homeostasis, mice were generated bearing an SR-BI promoter mutation that resulted in decreased expression of the receptor in homozygous mutant (designated SR-BI att) mice. Hepatic expression of the receptor was reduced by 53% with a corresponding increase in total plasma cholesterol levels of 50–70% in SR-BI att mice, attributable almost exclusively to elevated plasma HDL. In addition to increased HDL-CE, HDL phospholipids and apo A-1 levels were elevated, and there was an increase in HDL particle size in mutant mice. Metabolic studies using HDL bearing nondegradable radiolabels in both the protein and lipid components demonstrated that reducing hepatic SR-BI expression by half was associated with a decrease of 47% in selective uptake of CE by the liver, and a corresponding reduction of 53% in selective removal of HDL-CE from plasma. Taken together, these findings strongly support a pivotal role for hepatic SR-BI expression in regulating plasma HDL levels and indicate that SR-BI is the major molecule mediating selective CE uptake by the liver. The inverse correlation between plasma HDL levels and atherosclerosis further suggests that SR-BI may influence the development of coronary artery disease.
Resumo:
The functions of neurotransmitters in fetal development are poorly understood. Genetic observations have suggested a role for the inhibitory amino acid neurotransmitter γ-aminobutyric acid (GABA) in the normal development of the mouse palate. Mice homozygous for mutations in the β-3 GABAA receptor subunit develop a cleft secondary palate. GABA, the ligand for this receptor, is synthesized by the enzyme glutamic acid decarboxylase. We have disrupted one of the two mouse Gad genes by gene targeting and also find defects in the formation of the palate. The striking similarity in phenotype between the receptor and ligand mutations clearly demonstrates a role for GABA signaling in normal palate development.
Resumo:
We have isolated a dominant mutation, night blindness a (nba), that causes a slow retinal degeneration in zebrafish. Heterozygous nba fish have normal vision through 2–3 months of age but subsequently become night blind. By 9.5 months of age, visual sensitivity of affected fish may be decreased more than two log units, or 100-fold, as measured behaviorally. Electroretinographic (ERG) thresholds of mutant fish are also raised significantly, and the ERG b-wave shows a delayed implicit time. These defects are due primarily to a late-onset photoreceptor cell degeneration involving initially the rods but eventually the cones as well. Homozygous nba fish display an early-onset neuronal degeneration throughout the retina and elsewhere in the central nervous system. As a result, animals develop with small eyes and die by 4–5 days postfertilization (pf). These latter data indicate that the mutation affecting nba fish is not in a photoreceptor cell-specific gene.
Resumo:
A common mutation (C677T) in the gene encoding for methylenetetrahydrofolate reductase (MTHFR) (5-methyltetrahydrofolate:(acceptor) oxidoreductase, EC 1.7.99.5), a key regulatory enzyme in one-carbon metabolism, results in a thermolabile variant of the MTHFR enzyme with reduced activity in vitro. In the present study we used a chromatographic method for folate analysis to test the hypothesis that this mutation would be associated with altered distribution of red blood cell (RBC) folates. An alteration was found as manifested by the presence of formylated tetrahydrofolate polyglutamates in addition to methylated derivatives in the RBCs from homozygous mutant individuals. 5-Methyltetrahydrofolate polyglutamates were the only folate form found in RBCs from individuals with the wild-type genotype. Existence of formylated folates in RBCs only from individuals with the thermolabile MTHFR is consistent with the hypothesis that there is in vivo impairment in the activity of the thermolabile variant of MTHFR and that this impairment results in an altered distribution of RBC folates.
Resumo:
Formation of the mammalian secondary palate is a highly regulated and complex process whose impairment often results in cleft palate, a common birth defect in both humans and animals. Loss-of-function analysis has linked a growing number of genes to this process. Here we report that Lhx8, a recently identified LIM homeobox gene, is expressed in the mesenchyme of the mouse palatal structures throughout their development. To test the function of Lhx8 in vivo, we generated a mutant mouse with a targeted deletion of the Lhx8 gene. Our analysis of the mutant animals revealed a crucial role for Lhx8 in palatogenesis. In Lhx8 homozygous mutant embryos, the bilateral primordial palatal shelves formed and elevated normally, but they often failed to make contact and to fuse properly, resulting in a cleft secondary palate. Because development of other craniofacial structures appeared normal, the impaired palatal formation in Lhx8-mutant mice was most likely caused by an intrinsic primary defect in the mesenchyme of the palatal shelves. The cleft palate phenotype observed in Lhx8-mutant mice suggests that Lhx8 is a candidate gene for the isolated nonsyndromic form of cleft palate in humans.
Resumo:
Plasma high density lipoprotein (HDL), which protects against atherosclerosis, is thought to remove cholesterol from peripheral tissues and to deliver cholesteryl esters via a selective uptake pathway to the liver (reverse cholesterol transport) and steroidogenic tissues (e.g., adrenal gland for storage and hormone synthesis). Despite its physiologic and pathophysiologic importance, the cellular metabolism of HDL has not been well defined. The class B, type I scavenger receptor (SR-BI) has been proposed to play an important role in HDL metabolism because (i) it is a cell surface HDL receptor which mediates selective cholesterol uptake in cultured cells, (ii) its physiologically regulated expression is most abundant in the liver and steroidogenic tissues, and (iii) hepatic overexpression dramatically lowers plasma HDL. To test directly the normal role of SR-BI in HDL metabolism, we generated mice with a targeted null mutation in the SR-BI gene. In heterozygous and homozygous mutants relative to wild-type controls, plasma cholesterol concentrations were increased by ≈31% and 125%, respectively, because of the formation of large, apolipoprotein A-I (apoA-I)-containing particles, and adrenal gland cholesterol content decreased by 42% and 72%, respectively. The plasma concentration of apoA-I, the major protein in HDL, was unchanged in the mutants. This, in conjunction with the increased lipoprotein size, suggests that the increased plasma cholesterol in the mutants was due to decreased selective cholesterol uptake. These results provide strong support for the proposal that in mice the gene encoding SR-BI plays a key role in determining the levels of plasma lipoprotein cholesterol (primarily HDL) and the accumulation of cholesterol stores in the adrenal gland. If it has a similar role in controlling plasma HDL in humans, SR-BI may influence the development and progression of atherosclerosis and may be an attractive candidate for therapeutic intervention in this disease.
Resumo:
We have generated lines of transgenic mice that express a mutant prion protein (PrP) containing 14 octapeptide repeats whose human homologue is associated with an inherited prion dementia. These mice develop a neurological illness with prominent ataxia at 65 or 240 days of age, depending on whether the transgene array is, respectively, homozygous or hemizygous. Starting from birth, mutant PrP is converted into a protease-resistant and detergent-insoluble form that resembles the scrapie isoform of PrP, and this form accumulates dramatically in many brain regions throughout the lifetime of the mice. As PrP accumulates, there is massive apoptosis of granule cells in the cerebellum. Our analysis provides important insights into the molecular pathogenesis of inherited prion disorders in humans.
Resumo:
The homozygous weaver mouse displays neuronal degeneration in several brain regions. Previous experiments in heterologous expression systems showed that the G protein-gated inward rectifier K+ channel (GIRK2) bearing the weaver pore-region GYG-to-SYG mutation (i) is not activated by Gβγ subunits, but instead shows constitutive activation, and (ii) is no longer a K+-selective channel but conducts Na+ as well. The present experiments on weaverGIRK2 (wvGIRK2) expressed in Xenopus oocytes show that the level of constitutive activation depends on intracellular Na+ concentration. In particular, manipulations that decrease intracellular Na+ produce a component of Na+-permeable current activated via a G protein pathway. Therefore, constitutive activation may not arise because the weaver mutation directly alters the gating transitions of the channel protein. Instead, there may be a regenerative cycle of Na+ influx through the wvGIRK2 channel, leading to additional Na+ activation. We also show that the wvGIRK2 channel is permeable to Ca2+, providing an additional mechanism for the degeneration that characterizes the weaver phenotype. We further demonstrate that the GIRK4 channel bearing the analogous weaver mutation has properties similar to those of the wvGIRK2 channel, providing a glimpse of the selective pressures that have maintained the GYG sequence in nearly all known K+ channels.
Resumo:
At least 11 complementation groups (CGs) have been identified for the peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, for which seven pathogenic genes have been elucidated. We have isolated a human PEX19 cDNA (HsPEX19) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary cell line, ZP119, defective in import of both matrix and membrane proteins. This cDNA encodes a hydrophilic protein (Pex19p) comprising 299 amino acids, with a prenylation motif, CAAX box, at the C terminus. Farnesylated Pex19p is partly, if not all, anchored in the peroxisomal membrane, exposing its N-terminal part to the cytosol. A stable transformant of ZP119 with HsPEX19 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX19 expression also restored peroxisomal protein import in fibroblasts from a patient (PBDJ-01) with Zellweger syndrome of CG-J. This patient (PBDJ-01) possessed a homozygous, inactivating mutation: a 1-base insertion, A764, in a codon for Met255, resulted in a frameshift, inducing a 24-aa sequence entirely distinct from normal Pex19p. These results demonstrate that PEX19 is the causative gene for CG-J PBD and suggest that the C-terminal part, including the CAAX homology box, is required for the biological function of Pex19p. Moreover, Pex19p is apparently involved at the initial stage in peroxisome membrane assembly, before the import of matrix protein.
Resumo:
Patients with mutations in the thyroid hormone receptor β (TRβ) gene manifest resistance to thyroid hormone (RTH), resulting in a constellation of variable phenotypic abnormalities. To understand the molecular basis underlying the action of mutant TRβ in vivo, we generated mice with a targeted mutation in the TRβ gene (TRβPV; PV, mutant thyroid hormone receptor kindred PV) by using homologous recombination and the Cre/loxP system. Mice expressing a single PVallele showed the typical abnormalities of thyroid function found in heterozygous humans with RTH. Homozygous PV mice exhibit severe dysfunction of the pituitary–thyroid axis, impaired weight gains, and abnormal bone development. This phenotype is distinct from that seen in mice with a null mutation in the TRβ gene. Importantly, we identified abnormal expression patterns of several genes in tissues of TRβPV mice, demonstrating the interference of the mutant TR with the gene regulatory functions of the wild-type TR in vivo. These results show that the actions of mutant and wild-type TRβ in vivo are distinct. This model allows further study of the molecular action of mutant TR in vivo, which could lead to better treatment for RTH patients.
Excitation–contraction uncoupling by a human central core disease mutation in the ryanodine receptor
Resumo:
Central core disease (CCD) is a human congenital myopathy characterized by fetal hypotonia and proximal muscle weakness that is linked to mutations in the gene encoding the type-1 ryanodine receptor (RyR1). CCD is thought to arise from Ca2+-induced damage stemming from mutant RyR1 proteins forming “leaky” sarcoplasmic reticulum (SR) Ca2+ release channels. A novel mutation in the C-terminal region of RyR1 (I4898T) accounts for an unusually severe and highly penetrant form of CCD in humans [Lynch, P. J., Tong, J., Lehane, M., Mallet, A., Giblin, L., Heffron, J. J., Vaughan, P., Zafra, G., MacLennan, D. H. & McCarthy, T. V. (1999) Proc. Natl. Acad. Sci. USA 96, 4164–4169]. We expressed in skeletal myotubes derived from RyR1-knockout (dyspedic) mice the analogous mutation engineered into a rabbit RyR1 cDNA (I4897T). Here we show that homozygous expression of I4897T in dyspedic myotubes results in a complete uncoupling of sarcolemmal excitation from voltage-gated SR Ca2+ release without significantly altering resting cytosolic Ca2+ levels, SR Ca2+ content, or RyR1-mediated enhancement of dihydropyridine receptor (DHPR) channel activity. Coexpression of both I4897T and wild-type RyR1 resulted in a 60% reduction in voltage-gated SR Ca2+ release, again without altering resting cytosolic Ca2+ levels, SR Ca2+ content, or DHPR channel activity. These findings indicate that muscle weakness suffered by individuals possessing the I4898T mutation involves a functional uncoupling of sarcolemmal excitation from SR Ca2+ release, rather than the expression of overactive or leaky SR Ca2+ release channels.
Resumo:
Plastoquinone and tocopherols are the two major quinone compounds in higher plant chloroplasts and are synthesized by a common pathway. In previous studies we characterized two loci in Arabidopsis defining key steps of this biosynthetic pathway. Mutation of the PDS1 locus disrupts the activity of p-hydroxyphenylpyruvate dioxygenase (HPPDase), the first committed step in the synthesis of both plastoquinone and tocopherols in plants. Although plants homozygous for the pds1 mutation could be rescued by growth in the presence of homogentisic acid, the product of HPPDase, we were unable to determine if the mutation directly or indirectly disrupted HPPDase activity. This paper reports the isolation of a cDNA, pHPPD, encoding Arabidopsis HPPDase and its functional characterization by expression in both plants and Escherichia coli. pHPPD encodes a 50-kD polypeptide with homology to previously identified HPPDases, including 37 highly conserved amino acid residues clustered in the carboxyl region of the protein. Expression of pHPPD in E. coli catalyzes the accumulation of homogentisic acid, indicating that it encodes a functional HPPDase enzyme. Mapping of pHPPD and co-segregation analysis of the pds1 mutation and the HPPD gene indicate tight linkage. Constitutive expression of pHPPD in a pds1 mutant background complements this mutation. Finally, comparison of the HPPD genomic sequences from wild type and pds1 identified a 17-bp deletion in the pds1 allele that results in deletion of the carboxyterminal 26 amino acids of the HPPDase protein. Together, these data conclusively demonstrate that pds1 is a mutation in the HPPDase structural gene.
Resumo:
Tuberous sclerosis (TS) is characterized by the development of hamartomas in various organs and is caused by a germ-line mutation in either TSC1 or TSC2 tumor suppressor genes. From the symptomatic resemblance among TS patients, involvement of TSC1 and TSC2 products in a common pathway has been suggested. Here, to analyze the function of the Tsc1 product, we established a line of Tsc1 (TSC1 homologue) knockout mouse by gene targeting. Heterozygous Tsc1 mutant (Tsc1+/−) mice developed renal and extra-renal tumors such as hepatic hemangiomas. In these tumors, loss of wild-type Tsc1 allele was observed. Homozygous Tsc1 mutants died around embryonic days 10.5–11.5, frequently associated with neural tube unclosure. As a whole, phenotypes of Tsc1 knockout mice resembled those of Tsc2 knockout mice previously reported, suggesting that the presumptive common pathway for Tsc1 and Tsc2 products may also exist in mice. Notably, however, development of renal tumors in Tsc1+/− mice was apparently slower than that in Tsc2+/− mice. The Tsc1 knockout mouse described here will be a useful model to elucidate the function of Tsc1 and Tsc2 products as well as pathogenesis of TS.
Resumo:
The weaver mutation in mice results in a severe ataxia that is attributable to the degeneration of cerebellar granule cells and dopaminergic neurons in the substantia nigra. Recent genetic studies indicate that the GIRK2 gene is altered in weaver. This gene codes for a G-protein-activated, inwardly rectifying K+ channel protein (8). The mutation results in a single amino acid substitution (glycine-->serine) in the pore-forming H5 region of the channel. The functional consequences of this mutation appear to depend upon the co-expression of other GIRK subunits--leading to either a gain or loss of function. Here, we show that G-protein-activated inwardly rectifying K+ currents are significantly reduced in cerebellar granule cells from animals carrying the mutant allele. The reduction is most pronounced in homozygous neurons. These findings suggest that the death of neurons in weaver is attributable to the loss of GIRK2-mediated currents, not to the expression of a nonspecific cation current.