4 resultados para Homer. The Odyssey. A student Guide

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 436-amino acid protein enolase 1 from yeast was degraded in vitro by purified wild-type and mutant yeast 20S proteasome particles. Analysis of the cleavage products at different times revealed a processive degradation mechanism and a length distribution of fragments ranging from 3 to 25 amino acids with an average length of 7 to 8 amino acids. Surprisingly, the average fragment length was very similar between wild-type and mutant 20S proteasomes with reduced numbers of active sites. This implies that the fragment length is not influenced by the distance between the active sites, as previously postulated. A detailed analysis of the cleavages also allowed the identification of certain amino acid characteristics in positions flanking the cleavage site that guide the selection of the P1 residues by the three active β subunits. Because yeast and mammalian proteasomes are highly homologous, similar cleavage motifs might be used by mammalian proteasomes. Therefore, our data provide a basis for predicting proteasomal degradation products from which peptides are sampled by major histocompatibility complex class I molecules for presentation to cytotoxic T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding reactions between human growth hormone (hGH) and its receptor provide a detailed account of how a polypeptide hormone activates its receptor and more generally how proteins interact. Through high-resolution structural and functional studies it is seen that hGH uses two different sites (site 1 and site 2) to bind two identical receptor molecules. This sequential dimerization reaction activates the receptor, presumably by bringing the intracellular domains into close proximity so they may activate cytosolic components. As a consequence of this mechanism it is possible to build antagonists to the receptor by introducing mutations in hGH that block binding at site 2 and to build even more potent antagonists by combining these with mutants that enhance binding at site 1. Alanine-scanning mutagenesis of all contact residues at the site 1 interface shows that only a small and complementary set of side chains clustered near the center of the interface affects binding. The most important contacts are hydrophobic, and these are surrounded by polar and charged interactions of lesser importance. Kinetic analysis shows for the most part that the important side chains function to maintain the complex, not to guide the hormone to the receptor. Hormone-induced homodimerization or heterodimerization reactions are turning out to be pervasive mechanisms for signal transduction. Moreover, the molecular recognition principles seen in the hGH-receptor complex are likely to generalize to other protein-protein complexes.