4 resultados para Home-range Size

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fecally dispersed parasites of 12 wild mammal species in Mudumalai Sanctuary, southern India, were studied. Fecal propagule densities and parasite diversity measures were correlated with host ecological variables. Host species with higher predatory pressure had lower parasite loads and parasite diversity. Host body weight, home range, population density, gregariousness, and diet did not show predicted effects on parasite loads. Measures of alpha diversity were positively correlated with parasite abundance and were negatively correlated with beta diversity. Based on these data, hypotheses regarding determinants of parasite community are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous analysis of the rules regarding how much more a female should invest in a litter of size C rather than producing a litter with one more offspring revealed an invariance relationship between litter size and the range of resources per offspring in any litter size. The rule is that the range of resources per offspring should be inversely proportional to litter size. Here we present a modification of this rule that relates litter size to the total resources devoted to reproduction at that litter size. The result is that the range of resources devoted to reproduction should be the same for all litter sizes. When parental phenotypes covary linearly with resources devoted to reproduction, then those traits should also show equal ranges within each litter size category (except for litters of one). We tested this prediction by examining the range in body size (=total length) of female mosquito fish (Gambusia hubbsi) at different litter sizes. Because resources devoted to reproduction may take many forms (e.g., nest defense), this prediction may have broad applicability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-distance population dispersal leaves its characteristic signature in genomes, namely, reduced diversity and increased linkage between genetic markers. This signature enables historical patterns of range expansion to be traced. Herein, we use microsatellite loci from the human pathogen Coccidioides immitis to show that genetic diversity in this fungus is geographically partitioned throughout North America. In contrast, analyses of South American C. immitis show that this population is genetically depauperate and was founded from a single North American population centered in Texas. Variances of allele distributions show that South American C. immitis have undergone rapid population growth, consistent with an epidemic increase in postcolonization population size. Herein, we estimate the introduction into South America to have occurred within the last 9,000–140,000 years. This range increase parallels that of Homo sapiens. Because of known associations between Amerindians and this fungus, we suggest that the colonization of South America by C. immitis represents a relatively recent and rapid codispersal of a host and its pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.