17 resultados para Historical evolution of the concept
em National Center for Biotechnology Information - NCBI
Resumo:
Two issues in the evolution of the intron/exon structure of genes are the role of exon shuffling and the origin of introns. Using a large data base of eukaryotic intron-containing genes, we have found that there are correlations between intron phases leading to an excess of symmetric exons and symmetric exon sets. We interpret these excesses as manifestations of exon shuffling and make a conservative estimate that at least 19% of the exons in the data base were involved in exon shuffling, suggesting an important role for exon shuffling in evolution. Furthermore, these excesses of symmetric exons appear also in those regions of eukaryotic genes that are homologous to prokaryotic genes: the ancient conserved regions. This last fact cannot be explained in terms of the insertional theory of introns but rather supports the concept that some of the introns were ancient, the exon theory of genes.
Resumo:
We have measured the stability and stoichiometry of variants of the human p53 tetramerization domain to assess the effects of mutation on homo- and hetero-oligomerization. The residues chosen for mutation were those in the hydrophobic core that we had previously found to be critical for its stability but are not conserved in human p73 or p51 or in p53-related proteins from invertebrates or vertebrates. The mutations introduced were either single natural mutations or combinations of mutations present in p53-like proteins from different species. Most of the mutations were substantially destabilizing when introduced singly. The introduction of multiple mutations led to two opposite effects: some combinations of mutations that have occurred during the evolution of the hydrophobic core of the domain in p53-like proteins had additive destabilizing effects, whereas other naturally occurring combinations of mutations had little or no net effect on the stability, there being mutually compensating effects of up to 9.5 kcal/mol of tetramer. The triple mutant L332V/F341L/L344I, whose hydrophobic core represents that of the chicken p53 domain, was nearly as stable as the human domain but had impaired hetero-oligomerization with it. Thus, engineering of a functional p53 variant with a reduced capacity to hetero-oligomerize with wild-type human p53 can be achieved without any impairment in the stability and subunit affinity of the engineered homo-oligomer.
Resumo:
An evolutionary process is simulated with a simple spin-glass-like model of proteins to examine the origin of folding ability. At each generation, sequences are randomly mutated and subjected to a simulation of the folding process based on the model. According to the frequency of local configurations at the active sites, sequences are selected and passed to the next generation. After a few hundred generations, a sequence capable of folding globally into a native conformation emerges. Moreover, the selected sequence has a distinct energy minimum and an anisotropic funnel on the energy surface, which are the imperative features for fast folding of proteins. The proposed model reveals that the functional selection on the local configurations leads a sequence to fold globally into a conformation at a faster rate.
Resumo:
Thermus thermophilus possesses an aspartyl-tRNA synthetase (AspRS2) able to aspartylate efficiently tRNAAsp and tRNAAsn. Aspartate mischarged on tRNAAsn then is converted into asparagine by an ω amidase that differs structurally from all known asparagine synthetases. However, aspartate is not misincorporated into proteins because the binding capacity of aminoacylated tRNAAsn to elongation factor Tu is only conferred by conversion of aspartate into asparagine. T. thermophilus additionally contains a second aspartyl-tRNA synthetase (AspRS1) able to aspartylate tRNAAsp and an asparaginyl-tRNA synthetase able to charge tRNAAsn with free asparagine, although the organism does not contain a tRNA-independent asparagine synthetase. In contrast to the duplicated pathway of tRNA asparaginylation, tRNA glutaminylation occurs in the thermophile via the usual pathway by using glutaminyl-tRNA synthetase and free glutamine synthesized by glutamine synthetase that is unique. T. thermophilus is able to ensure tRNA aminoacylation by alternative routes involving either the direct pathway or by conversion of amino acid mischarged on tRNA. These findings shed light on the interrelation between the tRNA-dependent and tRNA-independent pathways of amino acid amidation and on the processes involved in fidelity of the aminoacylation systems.
Resumo:
The Mycetozoa include the cellular (dictyostelid), acellular (myxogastrid), and protostelid slime molds. However, available molecular data are in disagreement on both the monophyly and phylogenetic position of the group. Ribosomal RNA trees show the myxogastrid and dictyostelid slime molds as unrelated early branching lineages, but actin and β-tubulin trees place them together as a single coherent (monophyletic) group, closely related to the animal–fungal clade. We have sequenced the elongation factor-1α genes from one member of each division of the Mycetozoa, including Dictyostelium discoideum, for which cDNA sequences were previously available. Phylogenetic analyses of these sequences strongly support a monophyletic Mycetozoa, with the myxogastrid and dictyostelid slime molds most closely related to each other. All phylogenetic methods used also place this coherent Mycetozoan assemblage as emerging among the multicellular eukaryotes, tentatively supported as more closely related to animals + fungi than are green plants. With our data there are now three proteins that consistently support a monophyletic Mycetozoa and at least four that place these taxa within the “crown” of the eukaryote tree. We suggest that ribosomal RNA data should be more closely examined with regard to these questions, and we emphasize the importance of developing multiple sequence data sets.
Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: Founder effect and premutations
Resumo:
Friedreich’s ataxia, the most frequent inherited ataxia, is caused, in the vast majority of cases, by large GAA repeat expansions in the first intron of the frataxin gene. The normal sequence corresponds to a moderately polymorphic trinucleotide repeat with bimodal size distribution. Small normal alleles have approximately eight to nine repeats whereas a more heterogeneous mode of large normal alleles ranges from 16 to 34 GAA. The latter class accounts for ≈17% of normal alleles. To identify the origin of the expansion mutation, we analyzed linkage disequilibrium between expansion mutations or normal alleles and a haplotype of five polymorphic markers within or close to the frataxin gene; 51% of the expansions were associated with a single haplotype, and the other expansions were associated with haplotypes that could be related to the major one by mutation at a polymorphic marker or by ancient recombination. Of interest, the major haplotype associated with expansion is also the major haplotype associated with the larger alleles in the normal size range and was almost never found associated with the smaller normal alleles. The results indicate that most if not all large normal alleles derive from a single founder chromosome and that they represent a reservoir for larger expansion events, possibly through “premutation” intermediates. Indeed, we found two such alleles (42 and 60 GAA) that underwent cataclysmic expansion to pathological range in a single generation. This stepwise evolution to large trinucleotide expansions already was suggested for myotonic dystrophy and fragile X syndrome and may relate to a common mutational mechanism, despite sequence motif differences.
Resumo:
The prochlorophytes are oxygenic prokaryotes differing from other cyanobacteria by the presence of a light-harvesting system containing both chlorophylls (Chls) a and b and by the absence of phycobilins. We demonstrate here that the Chl a/b binding proteins from all three known prochlorophyte genera are closely related to IsiA, a cyanobacterial Chl a-binding protein induced by iron starvation, and to CP43, a constitutively expressed Chl a antenna protein of photosystem II. The prochlorophyte Chl a/b protein (pcb) genes do not belong to the extended gene family encoding eukaryotic Chl a/b and Chl a/c light-harvesting proteins. Although higher plants and prochlorophytes share common pigment complements, their light-harvesting systems have evolved independently.
Resumo:
Buchnera aphidicola is an obligate, strictly vertically transmitted, bacterial symbiont of aphids. It supplies its host with essential amino acids, nutrients required by aphids but deficient in their diet of plant phloem sap. Several lineages of Buchnera show adaptation to their nutritional role in the form of plasmid-mediated amplification of key-genes involved in the biosynthesis of tryptophan (trpEG) and leucine (leuABCD). Phylogenetic analyses of these plasmid-encoded functions have thus far suggested the absence of horizontal plasmid exchange among lineages of Buchnera. Here, we describe three new Buchnera plasmids, obtained from species of the aphid host families Lachnidae and Pemphigidae. All three plasmids belong to the repA1 family of Buchnera plasmids, which is characterized by the presence of a repA1-replicon responsible for replication initiation. A comprehensive analysis of this family of plasmids unexpectedly revealed significantly incongruent phylogenies for different plasmid and chromosomally encoded loci. We infer from these incongruencies a case of horizontal plasmid transfer in Buchnera. This process may have been mediated by secondary endosymbionts, which occasionally undergo horizontal transmission in aphids.
Resumo:
Sequence analysis of chloroplast and mitochondrial large subunit rRNA genes from over 75 green algae disclosed 28 new group I intron-encoded proteins carrying a single LAGLIDADG motif. These putative homing endonucleases form four subfamilies of homologous enzymes, with the members of each subfamily being encoded by introns sharing the same insertion site. We showed that four divergent endonucleases from the I-CreI subfamily cleave the same DNA substrates. Mapping of the 66 amino acids that are conserved among the members of this subfamily on the 3-dimensional structure of I-CreI bound to its recognition sequence revealed that these residues participate in protein folding, homodimerization, DNA recognition and catalysis. Surprisingly, only seven of the 21 I-CreI amino acids interacting with DNA are conserved, suggesting that I-CreI and its homologs use different subsets of residues to recognize the same DNA sequence. Our sequence comparison of all 45 single-LAGLIDADG proteins identified so far suggests that these proteins share related structures and that there is a weak pressure in each subfamily to maintain identical protein–DNA contacts. The high sequence variability we observed in the DNA-binding site of homologous LAGLIDADG endonucleases provides insight into how these proteins evolve new DNA specificity.
Resumo:
Annelids, unlike their vertebrate or fruit fly cousins, are a bilaterian taxon often overlooked when addressing the question of body plan evolution. However, recent data suggest that annelids offer unique insights on the early evolution of spiral cleavage, anteroposterior axis formation, body axis segmentation, and head versus trunk distinction.
Resumo:
Numerous island-inhabiting species of predominantly herbaceous angiosperm genera are woody shrubs or trees. Such "insular woodiness" is strongly manifested in the genus Echium, in which the continental species of circummediterranean distribution are herbaceous, whereas endemic species of islands along the Atlantic coast of north Africa are woody perennial shrubs. The history of 37 Echium species was traced with 70 kb of noncoding DNA determined from both chloroplast and nuclear genomes. In all, 239 polymorphic positions with 137 informative sites, in addition to 27 informative indels, were found. Island-dwelling Echium species are shown to descend from herbaceous continental ancestors via a single island colonization event that occurred < 20 million years ago. Founding colonization appears to have taken place on the Canary Islands, from which the Madeira and Cape Verde archipelagos were invaded. Colonization of island habitats correlates with a recent origin of perennial woodiness from herbaceous habit and was furthermore accompanied by intense speciation, which brought forth remarkable diversity of forms among contemporary island endemics. We argue that the origin of insular woodiness involved response to counter-selection of inbreeding depression in founding island colonies.
Resumo:
The vertebrate Dlx gene family consists of homeobox-containing transcription factors distributed in pairs on the same chromosomes as the Hox genes. To investigate the evolutionary history of Dlx genes, we have cloned five new zebrafish family members and have provided additional sequence information for two mouse genes. Phylogenetic analyses of Dlx gene sequences considered in the context of their chromosomal arrangements suggest that an initial tandem duplication produced a linked pair of Dlx genes after the divergence of chordates and arthropods but prior to the divergence of tunicates and vertebrates. This pair of Dlx genes was then duplicated in the chromosomal events that led to the four clusters of Hox genes characteristic of bony fish and tetrapods. It is possible that a pair of Dlx genes linked to the Hoxc cluster has been lost from mammals. We were unable to distinguish between independent duplication and retention of the ancestral state of bony vertebrates to explain the presence of a greater number of Dlx genes in zebrafish than mammals. Determination of the linkage relationship of these additional zebrafish Dlx genes to Hox clusters should help resolve this issue.
Resumo:
Most evolutionary studies of oceanic islands have focused on the Pacific Ocean. There are very few examples from the Atlantic archipelagos, especially Macaronesia, despite their unusual combination of features, including a close proximity to the continent, a broad range of geological ages, and a biota linked to a source area that existed in the Mediterranean basin before the late Tertiary. A chloroplast DNA (cpDNA) restriction site analysis of Argyranthemum (Asteraceae: Anthemideae), the largest endemic genus of plants of any volcanic archipelago in the Atlantic Ocean, was performed to examine patterns of plant evolution in Macaronesia. cpDNA data indicated that Argyranthemum is a monophyletic group that has speciated recently. The cpDNA tree showed a weak correlation with the current sectional classification and insular distribution. Two major cpDNA lineages were identified. One was restricted to northern archipelagos--e.g., Madeira, Desertas, and Selvagens--and the second comprised taxa endemic to the southern archipelago--e.g., the Canary Islands. The two major radiations identified in the Canaries are correlated with distinct ecological habitats; one is restricted to ecological zones under the influence of the northeastern trade winds and the other to regions that are not affected by these winds. The patterns of phylogenetic relationships in Argyranthemum indicate that interisland colonization between similar ecological zones is the main mechanism for establishing founder populations. This phenomenon, combined with rapid radiation into distinct ecological zones and interspecific hybridization, is the primary explanation for species diversification.
Resumo:
Investigations of the fine-scale structure in the compact nucleus of the radio source 3C 84 in NGC 1275 (New General Catalogue number) are reported. Structural monitoring observations beginning as early as 1976, and continuing to the present, revealed subluminal motions in a jet-like relatively diffuse region extending away from a flat-spectrum core. A counterjet feature was discovered in 1993, and very recent nearly simultaneous studies have detected the same feature at five frequencies ranging from 5 to 43 GHz. The counterjet exhibits a strong low-frequency cutoff, giving this region of the source an inverted spectrum. The observations are consistent with a physical model in which the cutoff arises from free-free absorption in a volume that surrounds the core but obscures only the counterjet feature. If such a model is confirmed, very-long-baseline radio interferometry observations can then be used to probe the accretion region, outside the radio jet, on parsec scales.