9 resultados para High selectivity

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The depolymerization of polysaccharides, particularly those containing acid-sensitive components, into intact constituent repeating units can be very difficult. We describe a method using ozonolysis for depolymerizing polysaccharides containing β-d-aldosidic linkages into short-chain polysaccharides and oligosaccharides. This method is carried out on polysaccharides that have been fully acetylated whereby β-d-aldosidic linkages are selectively oxidized by ozone to form esters, from which the polysaccharides are subsequently cleaved with a nucleophile. Ozone oxidation of aldosidic linkages proceeds under strong stereoelectronic control, and reaction rates depend on the conformations of glycosidic linkages. Thus, β-d-aldosidic linkages with different conformations can have very different reaction rates even in the absence of substantial chemical differences. These rate differences allowed for very high selectivity in cleaving β-d-linkages of polysaccharides. Several polysaccharides from group B Streptococcus and other bacterial species were selectively depolymerized with this method. The repeating units of the group B Streptococcus polysaccharides all contain an acid-sensitive sialic acid residue in a terminal position on a side chain and several β-d-residues including galactose, glucose, and N-acetylglucosamine; however, with each polysaccharide, one type of linkage was more reactive than others. Selective cleavage of the most sensitive linkage occurs randomly throughout the polymer chain, yielding fragments of controllable and narrowly distributed sizes and the same repeating-unit structure. The average size of the molecules decreases exponentially, and desired sizes can be obtained by stopping the reaction at appropriate time points. With this method the labile sialic acid residue was not affected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cation-π interactions are important forces in molecular recognition by biological receptors, enzyme catalysis, and crystal engineering. We have harnessed these interactions in designing molecular systems with circular arrangement of benzene units that are capable of acting as ionophores and models for biological receptors. [n]Collarenes are promising candidates with high selectivity for a specific cation, depending on n, because of their structural rigidity and well-defined cavity size. The interaction energies of [n]collarenes with cations have been evaluated by using ab initio calculations. The selectivity of these [n]collarenes in aqueous solution was revealed by using statistical perturbation theory in conjunction with Monte Carlo and molecular dynamics simulations. It has been observed that in [n]collarenes the ratio of the interaction energies of a cation with it and the cation with the basic building unit (benzene) can be correlated to its ion selectivity. We find that collarenes are excellent and efficient ionophores that bind cations through cation-π interactions. [6]Collarene is found to be a selective host for Li+ and Mg2+, [8]collarene for K+ and Sr2+, and [10]collarene for Cs+ and Ba2+. This finding indicates that [10]collarene and [8]collarene could be used for effective separation of highly radioactive isotopes, 137Cs and 90Sr, which are major constituents of nuclear wastes. More interestingly, collarenes of larger cavity size can be useful in capturing organic cations. [12]Collarene exhibits a pronounced affinity for tetramethylammonium cation and acetylcholine, which implies that it could serve as a model for acetylcholinestrase. Thus, collarenes can prove to be novel and effective ionophores/model-receptors capable of heralding a new direction in molecular recognition and host-guest chemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compound 1 (F), a nonpolar nucleoside analog that is isosteric with thymidine, has been proposed as a probe for the importance of hydrogen bonds in biological systems. Consistent with its lack of strong H-bond donors or acceptors, F is shown here by thermal denaturation studies to pair very poorly and with no significant selectivity among natural bases in DNA oligonucleotides. We report the synthesis of the 5′-triphosphate derivative of 1 and the study of its ability to be inserted into replicating DNA strands by the Klenow fragment (KF, exo− mutant) of Escherichia coli DNA polymerase I. We find that this nucleotide derivative (dFTP) is a surprisingly good substrate for KF; steady-state measurements indicate it is inserted into a template opposite adenine with efficiency (Vmax/Km) only 40-fold lower than dTTP. Moreover, it is inserted opposite A (relative to C, G, or T) with selectivity nearly as high as that observed for dTTP. Elongation of the strand past F in an F–A pair is associated with a brief pause, whereas that beyond A in the inverted A–F pair is not. Combined with data from studies with F in the template strand, the results show that KF can efficiently replicate a base pair (A–F/F–A) that is inherently very unstable, and the replication occurs with very high fidelity despite a lack of inherent base-pairing selectivity. The results suggest that hydrogen bonds may be less important in the fidelity of replication than commonly believed and that nucleotide/template shape complementarity may play a more important role than previously believed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC β and γ subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC α subunit (αS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the αS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that αS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphotyrosine-binding (PTB) domain is a recently identified protein module that has been characterized as binding to phosphopeptides containing an NPXpY motif (X = any amino acid). We describe here a novel peptide sequence recognized by the PTB domain from Drosophila Numb (dNumb), a protein involved in cell fate determination and asymmetric cell division during the development of the Drosophila nervous system. Using a Tyr-oriented peptide library to screen for ligands, the dNumb PTB domain was found to bind selectively to peptides containing a YIGPYφ motif (φ represents a hydrophobic residue). A synthetic peptide containing this sequence bound specifically to the isolated dNumb PTB domain in solution with a dissociation constant (Kd) of 5.78 ± 0.74 μM. Interestingly, the affinity of this peptide for the dNumb PTB domain was increased (Kd = 1.41 ± 0.10 μM) when the second tyrosine in the sequence was phosphorylated. Amino acid substitution studies of the phosphopeptide demonstrated that a core motif of sequence GP(p)Y is required for high-affinity binding to the dNumb PTB domain. Nuclear magnetic resonance experiments performed on isotopically labeled protein complexed with either Tyr- or pTyr-containing peptides suggest that the same set of amino acids in the dNumb PTB domain is involved in binding both phosphorylated and nonphosphorylated forms of the peptide. The in vitro selectivity of the dNumb PTB domain is therefore markedly different from those of the Shc and IRS-1 PTB domains, in that it interacts preferentially with a GP(p)Y motif, rather than NPXpY, and does not absolutely require ligand phosphorylation for binding. Our results suggest that the PTB domain is a versatile protein module, capable of exhibiting varied binding specificities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania parasites lack a purine biosynthetic pathway and depend on surface nucleoside and nucleobase transporters to provide them with host purines. Leishmania donovani possess two closely related genes that encode high affinity adenosine-pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2 and that transport the toxic adenosine analog tubercidin in addition to the natural substrates. In this study, we have characterized a drug-resistant clonal mutant of L. donovani (TUBA5) that is deficient in LdNT1 transport and consequently resistant to tubercidin. In TUBA5 cells, the LdNT1.2 genes had the same sequence as wild-type cells. However, because LdNT1.2 mRNA is not detectable in either wild-type or TUBA5 promastigotes, LdNT1.2 does not contribute to nucleoside transport in this stage of the life cycle. In contrast, the TUBA5 cells were compound heterozygotes at the LdNT1.1 locus containing two mutant alleles that encompassed distinct point mutations, each of which impaired transport function. One of the mutant LdNT1.1 alleles encoded a G183D substitution in predicted TM 5, and the other allele contained a C337Y change in predicted TM 7. Whereas G183D and C337Y mutants had only slightly elevated adenosine Km values, the severe impairment in transport resulted from drastically (≈20-fold) reduced Vmax values. Because these transporters were correctly targeted to the plasma membrane, the reduction in Vmax apparently resulted from a defect in translocation. Strikingly, G183 was essential for pyrimidine nucleoside but not adenosine transport. A mutant transporter with a G183A substitution had an altered substrate specificity, exhibiting robust adenosine transport but undetectable uridine uptake. These results suggest that TM 5 is likely to form part of the nucleoside translocation pathway in LdNT1.1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diphosphoinositol pentakisphosphate (PP-IP5) and bis(diphospho)inositol tetrakisphosphate (bis-PP-IP4) are recently identified inositol phosphates that possess pyrophosphate bonds. We have purified an inositol hexakisphosphate (IP6) kinase from rat brain supernatants. The pure protein, a monomer of 54 kDa, displays high affinity (Km = 0.7 microM) and selectivity for inositol hexakisphosphate as substrate. It can be dissociated from bis(diphospho)inositol tetrakisphosphate synthetic activity. The purified enzyme transfers a phosphate from PP-IP5 to ADP to form ATP. This ATP synthase activity indicates the high phosphate group transfer potential of PP-IP5 and may represent a physiological role for PP-IP5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genes containing the interferon-stimulated response element (ISRE) enhancer have been characterized as transcriptionally responsive primarily to type I interferons (IFN alpha/beta). Induction is due to activation of a multimeric transcription factor, interferon-stimulated gene factor 3 (ISGF3), which is activated by IFN alpha/beta but not by IFN gamma. We found that ISRE-containing genes were induced by IFN gamma as well as by IFN alpha in Vero cells. The IFN gamma response was dependent on the ISRE and was accentuated by preexposure of cells to IFN alpha, a treatment that increases the abundance of ISGF3 components. Overexpression of ISGF3 polypeptides showed that the IFN gamma response depended on the DNA-binding protein ISGF3 gamma (p48) as well as on the 91-kDa protein STAT91 (Stat1 alpha). The transcriptional response to IFN alpha required the 113-kDa protein STAT113 (Stat2) in addition to STAT91 and p48. Mutant fibrosarcoma cells deficient in each component of ISGF3 were used to confirm that IFN gamma induction of an ISRE reporter required p48 and STAT91, but not STAT113. A complex containing p48 and phosphorylated STAT91 but lacking STAT113 bound the ISRE in vitro. IFN gamma-induced activation of this complex, preferentially formed at high concentrations of p48 and STAT91, may explain some of the overlapping responses to IFN alpha and IFN gamma.