4 resultados para High schools--Administration.
em National Center for Biotechnology Information - NCBI
Resumo:
The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce long-lasting inhibition of the DAT as a mean of preventing the "high" and reducing drug-seeking behavior has become a major strategy in medication development. However, neither the relation between the high and DAT inhibition nor the ability to block the high by prior DAT blockade have ever been demonstrated. To evaluate if DAT could prevent the high induced by methylphenidate (MP), a drug which like cocaine inhibits the DAT, we compared the responses in eight non-drug-abusing subjects between the first and the second of two MP doses (0.375 mg/kg, i.v.) given 60 min apart. At 60 min the high from MP has returned to baseline, but 75-80% of the drug remains in brain. Positron-emission tomography and [11C]d-threo-MP were used to estimate DAT occupancies at different times after MP. DAT inhibition by MP did not block or attenuate the high from a second dose of MP given 60 min later, despite a 80% residual transporter occupancy from the first dose. Furthermore some subjects did not perceive a high after single or repeated administration despite significant DAT blockade. These results indicate that DAT occupancy is not sufficient to account for the high, and that for DAT inhibitors to be therapeutically effective, occupancies > 80% may be required.
Resumo:
The renin-angiotensin system plays a crucial role in the development and establishment of the hypertensive state in the spontaneously hypertensive (SH) rat. Interruption of this system's activity by pharmacological means results in the lowering of blood pressure (BP) and control of hypertension. However, such means are temporary and require the continuous use of drugs for the control of this pathophysiological state. Our objective in this investigation was to determine if a virally mediated gene-transfer approach using angiotensin type 1 receptor antisense (AT1R-AS) could be used to control hypertension on a long-term basis in the SH rat model of human essential hypertension. Injection of viral particles containing AT1R-AS (LNSV-AT1R-AS) in 5-day-old rats resulted in a lowering of BP exclusively in the SH rat and not in the Wistar Kyoto normotensive control. A maximal anti-hypertensive response of 33 +/- 5 mmHg was observed, was maintained throughout development, and still persisted 3 months after administration of LNSV-AT1R-AS. The lowering of BP was associated with the expression of AT1R-AS transcript and decreases in AT1-receptor in many peripheral angiotensin II target tissues such as mesenteric artery, adrenal gland, heart, and kidney. Attenuation of angiotensin II-stimulated physiological actions such as contraction of aortic rings and increase in BP was also observed in the LNSV-AT1R-AS-treated SH rat. These observations show that a single injection of LNSV-AT1R-AS normalizes BP in the SH rat on a long-term basis. They suggest that such a gene-transfer strategy can be successfully used to control the development of hypertension on a permanent basis.
Resumo:
Adenoviral vectors can direct high-level expression of a transgene, but, due to a host immune response to adenoviral antigens, expression is of limited duration, and repetitive administration has generally been unsuccessful. Exposure to foreign proteins beginning in the neonatal period may alter or ablate the immune response. We injected adult and neonatal (immunocompetent) CD-1 mice intravenously with an adenoviral vector expressing human blood coagulation factor IX. In both groups of mice, expression of human factor IX persisted for 12-16 weeks. However, in mice initially injected as adults, repeat administration of the vector resulted in no detectable expression of the transgene, whereas in mice initially injected in the neonatal period, repeat administration resulted in high-level expression of human factor IX. We show that animals that fail to express the transgene on repeat administration have developed high-titer neutralizing antibodies to adenovirus, whereas those that do express factor IX have not. This experimental model suggests that newborn mice can be tolerized to adenoviral vectors and demonstrates that at least one repeat injection of the adenoviral vector is possible; the model will be useful in elucidating the immunologic mechanisms underlying successful repeat administration of adenoviral vectors.
Resumo:
The induction of arthritis in DBA/1 mice usually requires immunization with the antigen type II collagen emulsified with Mycobacterium tuberculosis in oil. Here we describe that interleukin 12 (IL-12) can replace mycobacteria and cause severe arthritis of DBA/1 mice when administered in combination with type II collagen. Immunization of DBA/1 mice with type II collagen emulsified in oil alone resulted in a weak immune response, and only a few animals (10-30%) developed arthritis. Administration of IL-12 for 5 days simultaneously with each immunization strongly enhanced the anti-type II collagen immune response. Collagen-specific interferon gamma (IFN-gamma) synthesis by ex vivo activated spleen cells was enhanced 3- to 10-fold. IFN-gamma was almost completely produced by CD4+ T cells. Furthermore, the production of collagen-specific IgG2a and IgG2b antibodies was upregulated 10- to 100-fold. As a consequence, the incidence of arthritis in the group of mice immunized with collagen plus IL-12 was very high (80-100%). The developing arthritis was severe, involving approximately 50% of all limbs with strongly increased footpad thickness in most cases. Furthermore, histological examination revealed massive, mainly polymorphonuclear cell infiltration, synovial hyperplasia, cartilage and bone destruction, as well as new bone formation. In many cases, this resulted in the complete loss of joint structure. Neutralization of IFN-gamma in vivo prevented the development of arthritis in collagen-immunized and IL-12-treated mice. In conclusion, our data show that in vivo administered IL-12 can profoundly upregulate a T helper I-type autoimmune response, resulting in severe joint disease in DBA/1 mice.