3 resultados para Hierarchical zeolites

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planning a goal-directed sequence of behavior is a higher function of the human brain that relies on the integrity of prefrontal cortical areas. In the Tower of London test, a puzzle in which beads sliding on pegs must be moved to match a designated goal configuration, patients with lesioned prefrontal cortex show deficits in planning a goal-directed sequence of moves. We propose a neuronal network model of sequence planning that passes this test and, when lesioned, fails in a way that mimics prefrontal patients’ behavior. Our model comprises a descending planning system with hierarchically organized plan, operation, and gesture levels, and an ascending evaluative system that analyzes the problem and computes internal reward signals that index the correct/erroneous status of the plan. Multiple parallel pathways connecting the evaluative and planning systems amend the plan and adapt it to the current problem. The model illustrates how specialized hierarchically organized neuronal assemblies may collectively emulate central executive or supervisory functions of the human brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For nearly 200 years since their discovery in 1756, geologists considered the zeolite minerals to occur as fairly large crystals in the vugs and cavities of basalts and other traprock formations. Here, they were prized by mineral collectors, but their small abundance and polymineralic nature defied commercial exploitation. As the synthetic zeolite (molecular sieve) business began to take hold in the late 1950s, huge beds of zeolite-rich sediments, formed by the alteration of volcanic ash (glass) in lake and marine waters, were discovered in the western United States and elsewhere in the world. These beds were found to contain as much as 95% of a single zeolite; they were generally flat-lying and easily mined by surface methods. The properties of these low-cost natural materials mimicked those of many of their synthetic counterparts, and considerable effort has made since that time to develop applications for them based on their unique adsorption, cation-exchange, dehydration–rehydration, and catalytic properties. Natural zeolites (i.e., those found in volcanogenic sedimentary rocks) have been and are being used as building stone, as lightweight aggregate and pozzolans in cements and concretes, as filler in paper, in the take-up of Cs and Sr from nuclear waste and fallout, as soil amendments in agronomy and horticulture, in the removal of ammonia from municipal, industrial, and agricultural waste and drinking waters, as energy exchangers in solar refrigerators, as dietary supplements in animal diets, as consumer deodorizers, in pet litters, in taking up ammonia from animal manures, and as ammonia filters in kidney-dialysis units. From their use in construction during Roman times, to their role as hydroponic (zeoponic) substrate for growing plants on space missions, to their recent success in the healing of cuts and wounds, natural zeolites are now considered to be full-fledged mineral commodities, the use of which promise to expand even more in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.