77 resultados para Hexameric helicase
em National Center for Biotechnology Information - NCBI
Resumo:
We have cloned, expressed and purified a hexameric human DNA helicase (hHcsA) from HeLa cells. Sequence analysis demonstrated that the hHcsA has strong sequence homology with DNA helicase genes from Saccharomyces cerevisiae and Caenorhabditis elegans, indicating that this gene appears to be well conserved from yeast to human. The hHcsA gene was cloned and expressed in Escherichia coli and purified to homogeneity. The expressed protein had a subunit molecular mass of 116 kDa and analysis of its native molecular mass by size exclusion chromatography suggested that hHcsA is a hexameric protein. The hHcsA protein had a strong DNA-dependent ATPase activity that was stimulated ≥5-fold by single-stranded DNA (ssDNA). Human hHcsA unwinds duplex DNA and analysis of the polarity of translocation demonstrated that the polarity of DNA unwinding was in a 5′→3′ direction. The helicase activity was stimulated by human and yeast replication protein A, but not significantly by E.coli ssDNA-binding protein. We have analyzed expression levels of the hHcsA gene in HeLa cells during various phases of the cell cycle using in situ hybridization analysis. Our results indicated that the expression of the hHcsA gene, as evidenced from the mRNA levels, is cell cycle-dependent. The maximal level of hHcsA expression was observed in late G1/early S phase, suggesting a possible role for this protein during S phase and in DNA synthesis.
Resumo:
Most helicases studied to date have been characterized as oligomeric, but the relation between their structure and function has not been understood. The bacteriophage T7 gene 4 helicase/primase proteins act in T7 DNA replication. We have used electron microscopy, three-dimensional reconstruction, and protein crosslinking to demonstrate that both proteins form hexameric rings around single-stranded DNA. Each subunit has two lobes, so the hexamer appears to be two-tiered, with a small ring stacked on a large ring. The single-stranded DNA passes through the central hole of the hexamer, and the data exclude substantial wrapping of the DNA about or within the protein ring. Further, the hexamer binds DNA with a defined polarity as the smaller ring of the hexamer points toward the 5' end of the DNA. The similarity in three-dimensional structure of the T7 gene 4 proteins to that of the Escherichia coli RuvB helicase suggests that polar rings assembled around DNA may be a general feature of numerous hexameric helicases involved in DNA replication, transcription, recombination, and repair.
Resumo:
Bacteriophage T7 DNA helicase is a ring-shaped hexamer that catalyzes duplex DNA unwinding using dTTP hydrolysis as an energy source. Of the six potential nucleotide binding sites on the hexamer, we have found that three are noncatalytic sites and three are catalytic sites. The noncatalytic sites bind nucleotides with a high affinity, but dTTPs bound to these sites do not dissociate or hydrolyze through many dTTPase turnovers at the catalytic sites. The catalytic sites show strong cooperativity which leads to sequential binding and hydrolysis of dTTP. The elucidated dTTPase mechanism of the catalytic sites of T7 helicase is remarkably similar to the binding change mechanism of the ATP synthase. Based on the similarity, a general mechanism for hexameric helicases is proposed. In this mechanism, an F1-ATPase-like rotational movement around the single-stranded DNA, which is bound through the central hole of the hexamer, is proposed to lead to unidirectional translocation along single-stranded DNA and duplex DNA unwinding.
Resumo:
The Saccharomyces cerevisiae genes PRP2, PRP16, and PRP22 encode pre-mRNA splicing factors that belong to the highly conserved “DEAH” family of putative RNA helicases. We previously identified two additional members of this family, JA1 and JA2. To investigate its biological function, we cloned the JA1 gene and generated alleles carrying mutations identical to those found in highly conserved regions of other members of the DEAH family. A ja1 allele carrying a mutation identical to that in the temperature-sensitive (ts) prp22–1 gene conferred ts phenotype when integrated into the genome of a wild-type strain by gene replacement. Northern analysis of RNA obtained from the ts strain shifted to a nonpermissive temperature revealed accumulation of unspliced pre-mRNAs and excised intron lariats. Furthermore, analysis of splicing complexes showed that intron lariats accumulated in spliceosomes. The results presented indicate that JA1 encodes a pre-mRNA processing factor (Prp) involved in disassembly of spliceosomes after the release of mature mRNA. We have therefore renamed this gene PRP43.
Resumo:
Yeast splicing factor Prp43, a DEAH box protein of the putative RNA helicase/RNA-dependent NTPase family, is a splicing factor that functions late in the pre-mRNA splicing pathway to facilitate spliceosome disassembly. In this paper we report cDNA cloning and characterization of mDEAH9, an apparent mammalian homologue of Prp43. Amino acid sequence comparison revealed that the two proteins are ≈65% identical over a 500-aa region spanning the central helicase domain and the C-terminal region. Expression of mDEAH9 in S. cerevisiae bearing a temperature-sensitive mutation in prp43 was sufficient to restore growth at the nonpermissive temperature. This functional complementation was specific, as mouse mDEAH9 failed to complement mutations in related splicing factor genes prp16 or prp22. Finally, double label immunofluorescence experiments performed with mammalian cells revealed colocalization of mDEAH9 and splicing factor SC35 in punctate nuclear speckles. Thus, the hypothesis that mDEAH9 represents the mammalian homologue of yeast Prp43 is supported by its high sequence homology, functional complementation, and colocalization with a known splicing factor in the nucleus. Our results provide additional support for the hypothesis that the spliceosomal machinery that mediates regulated, dynamic changes in conformation of pre-mRNA and snRNP RNAs has been highly conserved through evolution.
Resumo:
Werner syndrome (WS) is an autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases. The gene responsible for WS encodes a member of the RecQ-like subfamily of DNA helicases. Here we show that its murine homologue maps to murine chromosome 8 in a region syntenic with the human WRN gene. We have deleted a segment of this gene and created Wrn-deficient embryonic stem (ES) cells and WS mice. While displaying reduced embryonic survival, live-born WS mice otherwise appear normal during their first year of life. Nonetheless, although several DNA repair systems are apparently intact in homozygous WS ES cells, such cells display a higher mutation rate and are significantly more sensitive to topoisomerase inhibitors (especially camptothecin) than are wild-type ES cells. Furthermore, mouse embryo fibroblasts derived from homozygous WS embryos show premature loss of proliferative capacity. At the molecular level, wild-type, but not mutant, WS protein copurifies through a series of centrifugation and chromatography steps with a multiprotein DNA replication complex.
Resumo:
The primase DnaG of Escherichia coli requires the participation of the replicative helicase DnaB for optimal synthesis of primer RNA for lagging strand replication. However, previous studies had not determined whether the activation of the primase or its loading on the template was accomplished by a helicase-mediated structural alteration of the single-stranded DNA or by a direct physical interaction between the DnaB and the DnaG proteins. In this paper we present evidence supporting direct interaction between the two proteins. We have mapped the surfaces of interaction on both DnaG and DnaB and show further that mutations that reduce the physical interaction also cause a significant reduction in primer synthesis. Thus, the physical interaction reported here appears to be physiologically significant.
Resumo:
Previous studies have identified an ATP-dependent DNA helicase activity intrinsic to the human minichromosome maintenance (MCM) complex, composed of MCM subunits 4, 6, and 7 [Ishimi, Y. (1997) J. Biol. Chem. 272, 24508–24513]. In contrast to the presence of multiple MCM genes (at least six) in eukaryotes, the archaeon Methanobacterium thermoautotrophicum ΔH (mth) genome contains a single open reading frame coding for an MCM protein. In this study we report the isolation of the mthMCM protein overexpressed in Escherichia coli. The purified recombinant protein was found to exist in both multimeric (≈103 kDa) and monomeric (76 kDa) forms. Both forms of the protein bind to single-stranded DNA, hydrolyze ATP in the presence of DNA, and possess 3′-to-5′ ATP-dependent DNA helicase activities. Thus, a single mthMCM protein contains biochemical properties identical to those associated with the eukaryotic MCM4, -6, and -7 complex. These results suggest that the characterization of the mthMCM protein and its multiple forms may contribute to our understanding of the role of MCM helicase activity in eukaryotic chromosomal DNA replication.
Resumo:
RNA helicase A (RHA) is the human homologue of the Drosophila maleless protein, an essential factor for the development of male flies. Recently, it was shown that RHA cooperates with the cAMP-responsive element in mediating the cAMP-dependent transcriptional activation of a number of genes. Due to the participation of cAMP as a second messenger in a number of signaling pathways, we examined the function of RHA during mammalian embryogenesis. To examine the role(s) of RHA in mammalian development, RHA knockout mice were generated by homologous recombination. Homozygosity for the mutant RHA allele led to early embryonic lethality. Histological analysis, combined with terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL) reactions of RHA-null embryos, revealed marked apoptotic cell death specifically in embryonic ectodermal cells during gastrulation. RNA in situ analyses of the expression of HNF-3β and Brachyury, two molecular markers for gastrulation, showed that RHA-null embryos at days 7.5 and 8.5 expressed both HNF-3β and Brachyury in a pattern similar to those of pre- and early streak stages of embryos, respectively. These observations indicate that RHA is necessary for early embryonic development and suggest the requirement of RHA for the survival and differentiation of embryonic ectoderm.
Resumo:
Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLM encodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of a Saccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern.
Resumo:
The TOR proteins, originally identified as targets of the immunosuppressant rapamycin, contain an ATM-like “lipid kinase” domain and are required for early G1 progression in eukaryotes. Using a screen to identify Saccharomyces cerevisiae mutants requiring overexpression of Tor1p for viability, we have isolated mutations in a gene we call ROT1 (requires overexpression of Tor1p). This gene is identical to DNA2, encoding a helicase required for DNA replication. As with its role in cell cycle progression, both the N-terminal and C-terminal regions, as well as the kinase domain of Tor1p, are required for rescue of dna2 mutants. Dna2 mutants are also rescued by Tor2p and show synthetic lethality with tor1 deletion mutants under specific conditions. Temperature-sensitive (Ts) dna2 mutants arrest irreversibly at G2/M in a RAD9- and MEC1-dependent manner, suggesting that Dna2p has a role in S phase. Frequencies of mitotic recombination and chromosome loss are elevated in dna2 mutants, also supporting a role for the protein in DNA synthesis. Temperature-shift experiments indicate that Dna2p functions during late S phase, although dna2 mutants are not deficient in bulk DNA synthesis. These data suggest that Dna2p is not required for replication fork progression but may be needed for a later event such as Okazaki fragment maturation.
Resumo:
We have developed a coupled helicase–polymerase DNA unwinding assay and have used it to monitor the rate of double-stranded DNA unwinding catalyzed by the phage T4 DNA replication helicase (gp41). This procedure can be used to follow helicase activity in subpopulations in systems in which the unwinding-synthesis reaction is not synchronized on all the substrate-template molecules. We show that T4 replication helicase (gp41) and polymerase (gp43) can be assembled onto a loading site located near the end of a long double-stranded DNA template in the presence of a macromolecular crowding agent, and that this coupled “two-protein” system can carry out ATP-dependent strand displacement DNA synthesis at physiological rates (400 to 500 bp per sec) and with high processivity in the absence of other T4 DNA replication proteins. These results suggest that a direct helicase–polymerase interaction may be central to fast and processive double-stranded DNA replication, and lead us to reconsider the roles of the other replication proteins in processivity control.
Resumo:
The minichromosome maintenance (MCM) proteins are essential for DNA replication in eukaryotes. Thus far, all eukaryotes have been shown to contain six highly related MCMs that apparently function together in DNA replication. Sequencing of the entire genome of the thermophilic archaeon Methanobacterium thermoautotrophicum has allowed us to identify only a single MCM-like gene (ORF Mt1770). This gene is most similar to MCM4 in eukaryotic cells. Here we have expressed and purified the M. thermoautotrophicum MCM protein. The purified protein forms a complex that has a molecular mass of ≈850 kDa, consistent with formation of a double hexamer. The protein has an ATP-independent DNA-binding activity, a DNA-stimulated ATPase activity that discriminates between single- and double-stranded DNA, and a strand-displacement (helicase) activity that can unwind up to 500 base pairs. The 3′ to 5′ helicase activity requires both ATP hydrolysis and a functional nucleotide-binding site. Moreover, the double hexamer form is the active helicase. It is therefore likely that an MCM complex acts as the replicative DNA helicase in eukaryotes and archaea. The simplified replication machinery in archaea may provide a simplified model for assembly of the machinery required for initiation of eukaryotic DNA replication.
Resumo:
Pathogenic strains of Helicobacter pylori secrete a cytotoxin, VacA, that in the presence of weak bases, causes osmotic swelling of acidic intracellular compartments enriched in markers for late endosomes and lysosomes. The molecular mechanisms by which VacA causes this vacuolation remain largely unknown. At neutral pH, VacA is predominantly a water-soluble dodecamer formed by two apposing hexamers. In this report, we show by using atomic force microscopy that below pH ≈5, VacA associates with anionic lipid bilayers to form hexameric membrane-associated complexes. We propose that water-soluble dodecameric VacA proteins disassemble at low pH and reassemble into membrane-spanning hexamers. The surface contour of the membrane-bound hexamer is strikingly similar to the outer surface of the soluble dodecamer, suggesting that the VacA surface in contact with the membrane is buried within the dodecamer before protonation. In addition, electrophysiological measurements indicate that, under the conditions determined by atomic force microscopy for membrane association, VacA forms pores across planar lipid bilayers. This low pH-triggered pore formation is likely a critical step in VacA activity.
Resumo:
The eukaryotic translation initiation factor 4A (eIF4A) is a member of the DEA(D/H)-box RNA helicase family, a diverse group of proteins that couples an ATPase activity to RNA binding and unwinding. Previous work has provided the structure of the amino-terminal, ATP-binding domain of eIF4A. Extending those results, we have solved the structure of the carboxyl-terminal domain of eIF4A with data to 1.75 Å resolution; it has a parallel α-β topology that superimposes, with minor variations, on the structures and conserved motifs of the equivalent domain in other, distantly related helicases. Using data to 2.8 Å resolution and molecular replacement with the refined model of the carboxyl-terminal domain, we have completed the structure of full-length eIF4A; it is a “dumbbell” structure consisting of two compact domains connected by an extended linker. By using the structures of other helicases as a template, compact structures can be modeled for eIF4A that suggest (i) helicase motif IV binds RNA; (ii) Arg-298, which is conserved in the DEA(D/H)-box RNA helicase family but is absent from many other helicases, also binds RNA; and (iii) motifs V and VI “link” the carboxyl-terminal domain to the amino-terminal domain through interactions with ATP and the DEA(D/H) motif, providing a mechanism for coupling ATP binding and hydrolysis with conformational changes that modulate RNA binding.