40 resultados para Hepatitis C vírus
em National Center for Biotechnology Information - NCBI
Resumo:
Endocytosis of the Flaviviridae viruses, hepatitis C virus, GB virus C/hepatitis G virus, and bovine viral diarrheal virus (BVDV) was shown to be mediated by low density lipoprotein (LDL) receptors on cultured cells by several lines of evidence: by the demonstration that endocytosis of these virus correlated with LDL receptor activity, by complete inhibition of detectable endocytosis by anti-LDL receptor antibody, by inhibition with anti-apolipoprotein E and -apolipoprotein B antibodies, by chemical methods abrogating lipoprotein/LDL receptor interactions, and by inhibition with the endocytosis inhibitor phenylarsine oxide. Confirmatory evidence was provided by the lack of detectable LDL receptor on cells known to be resistant to BVDV infection. Endocytosis via the LDL receptor was shown to be mediated by complexing of the virus to very low density lipoprotein or LDL but not high density lipoprotein. Studies using LDL receptor-deficient cells or a cytolytic BVDV system indicated that the LDL receptor may be the main but not exclusive means of cell entry of these viruses. Studies on other types of viruses indicated that this mechanism may not be exclusive to Flaviviridae but may be used by viruses that associate with lipoprotein in the blood. These findings provide evidence that the family of LDL receptors may serve as viral receptors.
Resumo:
We have succeeded in constructing a stable full-length cDNA clone of strain H77 (genotype 1a) of hepatitis C virus (HCV). We devised a cassette vector with fixed 5′ and 3′ termini and constructed multiple full-length cDNA clones of H77 in a single step by cloning of the entire ORF, which was amplified by long reverse transcriptase–PCR, directly into this vector. The infectivity of two complete full-length cDNA clones was tested by the direct intrahepatic injection of a chimpanzee with RNA transcripts. However, we found no evidence for HCV replication. Sequence analysis of these and 16 additional full-length clones revealed that seven clones were defective for polyprotein synthesis, and the remaining nine clones had 6–28 amino acid mutations in the predicted polyprotein compared with the consensus sequence of H77. Next, we constructed a consensus chimera from four of the full-length cDNA clones with just two ligation steps. Injection of RNA transcripts from this consensus clone into the liver of a chimpanzee resulted in viral replication. The sequence of the virus recovered from the chimpanzee was identical to that of the injected RNA transcripts. This stable infectious molecular clone should be an important tool for developing a better understanding of the molecular biology and pathogenesis of HCV.
Resumo:
We report the crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus, a major human pathogen, to 2.8-Å resolution. This enzyme is a key target for developing specific antiviral therapy. The structure of the catalytic domain contains 531 residues folded in the characteristic fingers, palm, and thumb subdomains. The fingers subdomain contains a region, the “fingertips,” that shares the same fold with reverse transcriptases. Superposition to the available structures of the latter shows that residues from the palm and fingertips are structurally equivalent. In addition, it shows that the hepatitis C virus polymerase was crystallized in a closed fingers conformation, similar to HIV-1 reverse transcriptase in ternary complex with DNA and dTTP [Huang H., Chopra, R., Verdine, G. L. & Harrison, S. C. (1998) Science 282, 1669–1675]. This superposition reveals the majority of the amino acid residues of the hepatitis C virus enzyme that are likely to be implicated in binding to the replicating RNA molecule and to the incoming NTP. It also suggests a rearrangement of the thumb domain as well as a possible concerted movement of thumb and fingertips during translocation of the RNA template-primer in successive polymerization rounds.
Resumo:
The identification of the neutralization domains of hepatitis C virus (HCV) is essential for the development of an effective vaccine. Here, we show that the hypervariable region 1 (HVR1) of the envelope 2 (E2) protein is a critical neutralization domain of HCV. Neutralization of HCV in vitro was attempted with a rabbit hyperimmune serum raised against a homologous synthetic peptide derived from the HVR1 of the E2 protein, and the residual infectivity was evaluated by inoculation of HCV-seronegative chimpanzees. The source of HCV was plasma obtained from a patient (H) during the acute phase of posttransfusion non-A, non-B hepatitis, which had been titered for infectivity in chimpanzees. The anti-HVR1 antiserum induced protection against homologous HCV infection in chimpanzees, but not against the emergence of neutralization escape mutants that were found to be already present in the complex viral quasispecies of the inoculum. The finding that HVR1 can elicit protective immunity opens new perspectives for the development of effective preventive strategies. However, the identification of the most variable region of HCV as a critical neutralization domain poses a major challenge for the development of a broadly reactive vaccine against HCV.
Resumo:
DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.
Resumo:
Large sections of the 3′ untranslated region (UTR) of hepatitis C virus (HCV) were deleted from an infectious cDNA clone, and the RNA transcripts from seven deletion mutants were tested sequentially for infectivity in a chimpanzee. Mutants lacking all or part of the 3′ terminal conserved region or the poly(U–UC) region were unable to infect the chimpanzee, indicating that both regions are critical for infectivity in vivo. However, the third region, the variable region, was able to tolerate a deletion that destroyed the two putative stem–loop structures within this region. Mutant VR-24 containing a deletion of the proximal 24 nt of the variable region of the 3′ UTR was viable in the chimpanzee and seemed to replicate as well as the undeleted parent virus. The chimpanzee became viremic 1 week after inoculation with mutant VR-24, and the HCV genome titer increased over time during the early acute infection. Therefore, the poly(U–UC) region and the conserved region, but not the variable region, of the 3′ UTR seem to be critical for in vivo infectivity of HCV.
Resumo:
The 5′-untranslated region of hepatitis C virus (HCV) is highly conserved, folds into a complex secondary structure, and functions as an internal ribosome entry site (IRES) to initiate translation of HCV proteins. We have developed a selection system based on a randomized hairpin ribozyme gene library to identify cellular factors involved in HCV IRES function. A retroviral vector ribozyme library with randomized target recognition sequences was introduced into HeLa cells, stably expressing a bicistronic construct encoding the hygromycin B phosphotransferase gene and the herpes simplex virus thymidine kinase gene (HSV-tk). Translation of the HSV-tk gene was mediated by the HCV IRES. Cells expressing ribozymes that inhibit HCV IRES-mediated translation of HSV-tk were selected via their resistance to both ganciclovir and hygromycin B. Two ribozymes reproducibly conferred the ganciclovir-resistant phenotype and were shown to inhibit IRES-mediated translation of HCV core protein but did not inhibit cap-dependent protein translation or cell growth. The functional targets of these ribozymes were identified as the gamma subunits of human eukaryotic initiation factors 2B (eIF2Bγ) and 2 (eIF2γ), respectively. The involvement of eIF2Bγ and eIF2γ in HCV IRES-mediated translation was further validated by ribozymes directed against additional sites within the mRNAs of these genes. In addition to leading to the identification of cellular IRES cofactors, ribozymes obtained from this cellular selection system could be directly used to specifically inhibit HCV viral translation, thereby facilitating the development of new antiviral strategies for HCV infection.
Resumo:
Persistent infection with hepatitis C virus (HCV) is among the leading causes of chronic liver disease. Previous studies suggested that genetic variation in hypervariable region 1 (HVR1) of the second envelope protein, possibly in response to host immune pressure, influences the outcome of HCV infection. In the present study, a chimpanzee transfected intrahepatically with RNA transcripts of an infectious HCV clone (pCV-H77C) from which HVR1 was deleted became infected; the ΔHVR1 virus was subsequently transmitted to a second chimpanzee. Infection with ΔHVR1 virus resulted in persistent infection in the former chimpanzee and in acute resolving infection in the latter chimpanzee. Both chimpanzees developed hepatitis. The ΔHVR1 virus initially replicated to low titers, but virus titer increased significantly after mutations appeared in the viral genome. Thus, wild-type HCV without HVR1 was apparently attenuated, suggesting a functional role of HVR1. However, our data indicate that HVR1 is not essential for the viability of HCV, the resolution of infection, or the progression to chronicity.
Resumo:
Cloned PCR products containing hepatitis C virus (HCV) genomic fragments have been used for analyses of HCV genomic heterogeneity and protein expression. These studies assume that the clones derived are representative of the entire virus population and that subsets are not inadvertently selected. The aim of the present study was to express HCV structural proteins. However, we found that there was a strong cloning selection for defective genomes and that most clones generated initially were incapable of expressing the HCV proteins. The HCV structural region (C-E1-E2-p7) was directly amplified by long reverse transcription–PCR from the plasma of an HCV-infected patient or from a control plasmid containing a viable full-length cDNA of HCV derived from the same patient but cloned in a different vector. The PCR products were cloned into a mammalian expression vector, amplified in Escherichia coli, and tested for their ability to produce HCV structural proteins. Twenty randomly picked clones derived from the HCV-infected patient all contained nucleotide mutations leading to absence or truncation of the expected HCV products. Of 25 clones derived from the control plasmid, only 8% were fully functional for polyprotein synthesis. The insertion of extra nucleotides in the region just upstream of the start codon of the HCV insert led to a statistically significant increase in the number of fully functional clones derived from the patient (42%) and from the control plasmid (72–92%). Nonrandom selection of clones during the cloning procedure has enormous implications for the study of viral heterogeneity, because it can produce a false spectrum of genomic diversity. It can also be an impediment to the construction of infectious viral clones.
Resumo:
Objective: To estimate the rate of seroconversion to positivity for hepatitis C antibody in repeat blood donors in England and to describe the probable routes of infection in these donors.
Resumo:
Objectives: To estimate the incidence of HIV and hepatitis C virus and risk factors for seroconversion among a cohort of injecting drug users.
Resumo:
Objective: To determine the risk factors for and timing of vertical transmission of hepatitis C virus in women who are not infected with HIV-1.
Resumo:
Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the HCV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV). We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host). The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.