14 resultados para Hematopoiesis -- physiology

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor-related, activation-induced cytokine (TRANCE), a tumor necrosis factor family member, mediates survival of dendritic cells in the immune system and is required for osteoclast differentiation and activation in the skeleton. We report the skeletal phenotype of TRANCE-deficient mice and its rescue by the TRANCE transgene specifically expressed in lymphocytes. TRANCE-deficient mice showed severe osteopetrosis, with no osteoclasts, marrow spaces, or tooth eruption, and exhibited profound growth retardation at several skeletal sites, including the limbs, skull, and vertebrae. These mice had marked chondrodysplasia, with thick, irregular growth plates and a relative increase in hypertrophic chondrocytes. Transgenic overexpression of TRANCE in lymphocytes of TRANCE-deficient mice rescued osteoclast development in two locations in growing long bones: excavation of marrow cavities permitting hematopoiesis in the marrow spaces, and remodeling of osteopetrotic woven bone in the shafts of long bones into histologically normal lamellar bone. However, osteoclasts in these mice failed to appear at the chondroosseous junction and the metaphyseal periosteum of long bones, nor were they present in tooth eruption pathways. These defects resulted in sclerotic metaphyses with persistence of club-shaped long bones and unerupted teeth, and the growth plate defects were largely unimproved by the TRANCE transgene. Thus, TRANCE-mediated regulation of the skeleton is complex, and impacts chondrocyte differentiation and osteoclast formation in a manner that likely requires local delivery of TRANCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used Computer-Assisted Personalized Approach (CAPA), a networked teaching and learning tool that generates computer individualized homework problem sets, in our large-enrollment introductory plant physiology course. We saw significant improvement in student examination performance with regular homework assignments, with CAPA being an effective and efficient substitute for hand-graded homework. Using CAPA, each student received a printed set of similar but individualized problems of a conceptual (qualitative) and/or quantitative nature with quality graphics. Because each set of problems is unique, students were encouraged to work together to clarify concepts but were required to do their own work for credit. Students could enter answers multiple times without penalty, and they were able to obtain immediate feedback and hints until the due date. These features increased student time on task, allowing higher course standards and student achievement in a diverse student population. CAPA handles routine tasks such as grading, recording, summarizing, and posting grades. In anonymous surveys, students indicated an overwhelming preference for homework in CAPA format, citing several features such as immediate feedback, multiple tries, and on-line accessibility as reasons for their preference. We wrote and used more than 170 problems on 17 topics in introductory plant physiology, cataloging them in a computer library for general access. Representative problems are compared and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early nodulin 2 (ENOD2) transcripts and protein are specifically found in the inner cortex of legume nodules, a location that coincides with the site of a barrier to O2 diffusion. The extracellular glycoprotein that binds the monoclonal antibody MAC236 has also been localized to this site. Thus, it has been proposed that these proteins function in the regulation of nodule permeability to O2 diffusion. It would then be expected that the levels of ENOD2 mRNA/protein and MAC236 antigen would differ in nodules with different permeabilities to O2. We examined the expression of ENOD2 and other nodule-expressed genes in Rhizobium meliloti-induced alfalfa nodules grown under 8, 20, or 50% O2. Although there was a change in the amount of MAC236 glycoprotein, the levels of ENOD2 mRNA and protein did not differ significantly among nodules grown at the different [O2], suggesting that neither ENOD2 transcription nor synthesis is involved in the long-term regulation of nodule permeability. Moreover, although nodules from all treatments reduced their permeability to O2 as the partial pressure of O2 (pO2) was increased to 100%, the levels of extractable ENOD2 and MAC236 proteins did not differ from those measured at the growth pO2, further suggesting that if these proteins are involved in a short-term regulation of the diffusion barrier, they must be involved in a way that does not require increased transcription or protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is reasonable to propose that gene expression profiles of purified stem cells could give clues for the molecular mechanisms of stem cell behavior. We took advantage of cDNA subtraction to identify a set of genes selectively expressed in mouse adult hematopoietic stem cells (HSC) as opposed to bone marrow (BM). Analysis of HSC-enriched genes revealed several key regulatory gene candidates, including two novel seven transmembrane (7TM) receptors. Furthermore, by using cDNA microarray techniques we found a large set of HSC-enriched genes that are expressed in mouse neurospheres (a population greatly enriched for neural progenitor cells), but not present in terminally differentiated neural cells. In situ hybridization demonstrated that many of them, including one HSC-enriched 7TM receptor, were selectively expressed in the germinal zones of fetal and adult brain, the regions harboring mouse neural stem cells. We propose that at least some of the transcripts that are selectively and commonly expressed in two or more types of stem cells define a functionally conserved group of genes evolved to participate in basic stem cell functions, including stem cell self-renewal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core binding factor beta (CBF beta) is considered to be a transcriptional coactivator that dimerizes with transcription factors core binding factor alpha 1 (CBFA1), -2, and -3, and enhances DNA binding capacity of these transcription factors. CBF beta and CBFA2, which is also called acute myeloid leukemia 1 gene, are frequently involved in chromosomal translocations in human leukemia. To elucidate the function of CBF beta, mice carrying a mutation in the Cbfb locus were generated. Homozygous mutant embryos died between embryonic days 11.5-13.5 due to hemorrhage in the central nervous system. Mutant embryos had primitive erythropoiesis in yolk sac but lacked definitive hematopoiesis in fetal liver. In the yolk sac of mutant embryos, no erythroid or myeloid progenitors of definitive hematopoietic origin were detected, and the expression of flk-2/flt-3, the marker gene for early precursor cells of definitive hematopoiesis, was absent. These data suggest that Cbfb is essential for definitive hematopoiesis in liver, especially for the commitment to early hematopoietic precursor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We created a "knockout" embryonic stem cell via targeted disruption of the phosphatidylinositol glycan class A (Pig-a) gene, resulting in loss of expression of cell surface glycosyl phosphatidylinositol-anchored proteins and reproducing the mutant phenotype of the human disease paroxysmal nocturnal hemoglobinuria. Morphogenesis of Pig-a- embryoid bodies (EB) in vitro was grossly aberrant and, unlike EB derived from normal embryonic stem cells, Pig-A EB produced no secondary hematopoietic colonies. Chimeric EB composed of control plus Pig-A- cells, however, appeared normal, and hematopoiesis from knock-out cells was reconstituted. Transfer in situ of glycosyl phosphatidylinositol-anchored proteins from normal to knock-out cells was demonstrated by two-color fluorescent analysis, suggesting a possible mechanism for these functional effects. Hematopoietic cells with mutated PIG-A genes in humans with paroxysmal nocturnal hemoglobinuria may be subject to comparable pathophysiologic processes and amenable to similar therapeutic protein transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glial fibrillary acidic protein (GFAP) is a member of the family of intermediate filament structural proteins and is found predominantly in astrocytes of the central nervous system (CNS). To assess the function of GFAP, we created GFAP-null mice using gene targeting in embryonic stem cells. The GFAP-null mice have normal development and fertility, and show no gross alterations in behavior or CNS morphology. Astrocytes are present in the CNS of the mutant mice, but contain a severely reduced number of intermediate filaments. Since astrocyte processes contact synapses and may modulate synaptic function, we examined whether the GFAP-null mice were altered in long-term potentiation in the CA1 region of the hippocampus. The GFAP-null mice displayed enhanced long-term potentiation of both population spike amplitude and excitatory post-synaptic potential slope compared to control mice. These data suggest that GFAP is important for astrocyte-neuronal interactions, and that astrocyte processes play a vital role in modulating synaptic efficacy in the CNS. These mice therefore represent a direct demonstration that a primary defect in astrocytes influences neuronal physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factors c-myb and GATA-2 are both required for blood cell development in vivo and in vitro. However, very little is known on their mechanism(s) of action and whether they impact on complementary or overlapping pathways of hematopoietic proliferation and differentiation. We report here that embryonic stem (ES) cells transfected with c-myb or GATA-2 cDNAs, individually or in combination, underwent hematopoietic commitment and differentiation in the absence of added hematopoietic growth factors but that stimulation with c-kit and flt-3 ligands enhanced colony formation only in the c-myb transfectants. This enhancement correlated with c-kit and flt-3 surface receptor up-regulation in c-myb-(but not GATA-2-) transfected ES cells. Transfection of ES cells with either a c-myb or a GATA-2 antisense construct abrogated erythromyeloid colony-forming ability in methyl cellulose; however, introduction of a full-length GATA-2 or c-myb cDNA, respectively, rescued the hematopoiesis-deficient phenotype, although only c-myb-rescued ES cells expressed c-kit and flt-3 surface receptors and formed increased numbers of hematopoietic colonies upon stimulation with the cognate ligands. These results are in agreement with previous studies indicating a fundamental role of c-myb and GATA-2 in hematopoiesis. Of greater importance, our studies suggest that GATA-2 and c-myb exert their roles in hematopoietic gene regulation through distinct mechanisms of action in nonoverlapping pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematopoiesis gives rise to blood cells of different lineages throughout normal life. Abnormalities in this developmental program lead to blood cell diseases including leukemia. The establishment of a cell culture system for the clonal development of hematopoietic cells made it possible to discover proteins that regulate cell viability, multiplication and differentiation of different hematopoietic cell lineages, and the molecular basis of normal and abnormal blood cell development. These regulators include cytokines now called colony-stimulating factors (CSFs) and interleukins (ILs). There is a network of cytokine interactions, which has positive regulators such as CSFs and ILs and negative regulators such as transforming growth factor beta and tumor necrosis factor (TNF). This multigene cytokine network provides flexibility depending on which part of the network is activated and allows amplification of response to a particular stimulus. Malignancy can be suppressed in certain types of leukemic cells by inducing differentiation with cytokines that regulate normal hematopoiesis or with other compounds that use alternative differentiation pathways. This created the basis for the clinical use of differentiation therapy. The suppression of malignancy by inducing differentiation can bypass genetic abnormalities that give rise to malignancy. Different CSFs and ILs suppress programmed cell death (apoptosis) and induce cell multiplication and differentiation, and these processes of development are separately regulated. The same cytokines suppress apoptosis in normal and leukemic cells, including apoptosis induced by irradiation and cytotoxic cancer chemotherapeutic compounds. An excess of cytokines can increase leukemic cell resistance to cytotoxic therapy. The tumor suppressor gene wild-type p53 induces apoptosis that can also be suppressed by cytokines. The oncogene mutant p53 suppresses apoptosis. Hematopoietic cytokines such as granulocyte CSF are now used clinically to correct defects in hematopoiesis, including repair of chemotherapy-associated suppression of normal hematopoiesis in cancer patients, stimulation of normal granulocyte development in patients with infantile congenital agranulocytosis, and increase of hematopoietic precursors for blood cell transplantation. Treatments that decrease the level of apoptosis-suppressing cytokines and downregulate expression of mutant p53 and other apoptosis suppressing genes in cancer cells could improve cytotoxic cancer therapy. The basic studies on hematopoiesis and leukemia have thus provided new approaches to therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CBFA2 (AML1) gene encodes a DNA-binding subunit of the heterodimeric core-binding factor. The CBFA2 gene is disrupted by the (8;21), (3;21), and (12;21) chromosomal translocations associated with leukemias and myelodysplasias in humans. Mice lacking a CBF alpha 2 protein capable of binding DNA die between embryonic days 11.5 and 12.5 due to hemorrhaging in the central nervous system (CNS), at the nerve/CNS interfaces of cranial and spinal nerves, and in somitic/intersomitic regions along the presumptive spinal cord. Hemorrhaging is preceded by symmetric, bilateral necrosis in these regions. Definitive erythropoiesis and myelopoiesis do not occur in Cbfa2-deficient embryos, and disruption of one copy of the Cbfa2 gene significantly reduces the number of progenitors for erythroid and myeloid cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scl gene encodes a basic-helix-loop-helix transcription factor which was identified through its involvement in chromosomal translocations in T-cell leukemia. To elucidate its physiological role, scl was targeted in embryonic stem cells. Mice heterozygous for the scl null mutation were intercrossed and their offspring were genotyped. Homozygous mutant (scl-/-) pups were not detected in newborn litters, and analysis at earlier time points demonstrated that scl-/- embryos were dying around embryonic day 9.5. The scl-/- embryos were pale, edematous, and markedly growth retarded after embryonic day 8.75. Histological studies showed complete absence of recognizable hematopoiesis in the yolk sac of these embryos. Early organogenesis appeared to be otherwise normal. Culture of yolk sac cells of wild-type, heterozygous, and homozygous littermates confirmed the absence of hematopoietic cells in scl-/- yolk sacs. Reverse transcription PCR was used to examine the transcripts of several genes implicated in early hematopoiesis. Transcripts of GATA-1 and PU.1 transcription factors were absent from RNA from scl-/- yolk sacs and embryos. These results implicate scl as a crucial regulator of early hematopoiesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinoblastoma (RB) gene specifies a nuclear phosphoprotein (pRb 105), which is a prototype tumor suppressor inactivated in a variety of human tumors. Recent studies suggest that RB is also involved in embryonic development of murine central nervous and hematopoietic systems. We have investigated RB expression and function in human adult hematopoiesis--i.e., in liquid suspension culture of purified quiescent hematopoietic progenitor cells (HPCs) induced by growth factor stimulus to proliferation and unilinage differentiation/maturation through the erythroid or granulocytic lineage. In the initial HPC differentiation stages, the RB gene is gradually induced at the mRNA and protein level in both erythroid and granulopoietic cultures. In late HPC differentiation and then precursor maturation, RB gene expression is sustained in the erythroid lineage, whereas it is sharply downmodulated in the granulocytic series. Functional studies were performed by treatment of HPC differentiation culture with phosphorothioate antisense oligomer targeting Rb mRNA; coherent with the expression pattern, oligomer treatment of late HPCs causes a dose-dependent and selective inhibition of erythroid colony formation. These observations suggest that the RB gene plays an erythroid- and stage-specific functional role in normal adult hematopoiesis, particularly at the level of late erythroid HPCs.