2 resultados para Hem

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

All but two genes involved in the ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been cloned, and their corresponding mutants have been described. The remaining genes encode the C-3 sterol dehydrogenase (C-4 decarboxylase) and the 3-keto sterol reductase and in concert with the C-4 sterol methyloxidase (ERG25) catalyze the sequential removal of the two methyl groups at the sterol C-4 position. The protein sequence of the Nocardia sp NAD(P)-dependent cholesterol dehydrogenase responsible for the conversion of cholesterol to its 3-keto derivative shows 30% similarity to a 329-aa Saccharomyces ORF, YGL001c, suggesting a possible role of YGL001c in sterol decarboxylation. The disruption of the YGL001c ORF was made in a diploid strain, and the segregants were plated onto sterol supplemented media under anaerobic growth conditions. Segregants containing the YGL001c disruption were not viable after transfer to fresh, sterol-supplemented media. However, one segregant was able to grow, and genetic analysis indicated that it contained a hem3 mutation. The YGL001c (ERG26) disruption also was viable in a hem 1Δ strain grown in the presence of ergosterol. Introduction of the erg26 mutation into an erg1 (squalene epoxidase) strain also was viable in ergosterol-supplemented media. We demonstrated that erg26 mutants grown on various sterol and heme-supplemented media accumulate nonesterified carboxylic acid sterols such as 4β,14α-dimethyl-4α-carboxy-cholesta-8,24-dien-3β-ol and 4β-methyl-4α-carboxy-cholesta-8,24-dien-3β-ol, the predicted substrates for the C-3 sterol dehydrogenase. Accumulation of these sterol molecules in a heme-competent erg26 strain results in an accumulation of toxic-oxygenated sterol intermediates that prevent growth, even in the presence of exogenously added sterol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bacillus subtilis mrgA gene encodes an abundant DNA-binding protein that protects cells against the lethal effects of H2O2. Transcription of mrgA is induced by H2O2 or by entry into stationary phase when manganese and iron levels are low. We have selected for strains derepressed for transcription of mrgA in the presence of Mn(II). The resulting cis-acting mutants define an operator site just upstream of the mrgA promoter. Similar sequences flank the promoters for the catalase gene, katA, and the heme biosynthesis operon, hemAXCDBL. Like mrgA, transcription of the katA and hem genes is repressed by Mn(II), which thereby potentiates the killing action of H2O2. We identified two classes of trans-acting mutants derepressed for mrgA transcription in the presence of Mn(II): some exhibit a coordinate derepression of MrgA, catalase, heme biosynthesis, and alkyl hydroperoxide reductase and are H2O2 resistant, while others have reduced catalase activity and are H2O2 sensitive. These data indicate that the peroxide stress response of B. subtilis is regulated by a repressor that senses both metal ion levels and H2O2.