177 resultados para Hedgehog signaling pathway
em National Center for Biotechnology Information - NCBI
Resumo:
cAMP, through the activation of cAMP-dependent protein kinase (PKA), is involved in transcriptional regulation. In eukaryotic cells, cAMP is not considered to alter the binding affinity of CREB/ATF to cAMP-responsive element (CRE) but to induce serine phosphorylation and consequent increase in transcriptional activity. In contrast, in prokaryotic cells, cAMP enhances the DNA binding of the catabolite repressor protein to regulate the transcription of several operons. The structural similarity of the cAMP binding sites in catabolite repressor protein and regulatory subunit of PKA type II (RII) suggested the possibility of a similar role for RII in eukaryotic gene regulation. Herein we report that RIIβ subunit of PKA is a transcription factor capable of interacting physically and functionally with a CRE. In contrast to CREB/ATF, the binding of RIIβ to a CRE was enhanced by cAMP, and in addition, RIIβ exhibited transcriptional activity as a Gal4-RIIβ fusion protein. These experiments identify RIIβ as a component of an alternative pathway for regulation of CRE-directed transcription in eukaryotic cells.
Resumo:
The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP12 agarose beads. Insulin affected neither the amount of mTOR immunoprecipitated nor the amount of mTOR detected by immunoblotting with mTAb2. However, the hormone markedly decreased the reactivity of mTOR with mTAb1, an antibody that activates the mTOR protein kinase. The effects of insulin on increasing mTOR protein kinase activity and on decreasing mTAb1 reactivity were abolished by incubating mTOR with protein phosphatase 1. Interestingly, the epitope for mTAb1 is located near the COOH terminus of mTOR in a 20-amino acid region that includes consensus sites for phosphorylation by protein kinase B (PKB). Experiments were performed in MER-Akt cells to investigate the role of PKB in controlling mTOR. These cells express a PKB-mutant estrogen receptor fusion protein that is activated when the cells are exposed to 4-hydroxytamoxifen. Activating PKB with 4-hydroxytamoxifen mimicked insulin by decreasing mTOR reactivity with mTAb1 and by increasing the PHAS-I kinase activity of mTOR. Our findings support the conclusion that insulin activates mTOR by promoting phosphorylation of the protein via a signaling pathway that contains PKB.
Resumo:
Nuclear receptors regulate metabolic pathways in response to changes in the environment by appropriate alterations in gene expression of key metabolic enzymes. Here, a computational search approach based on iteratively built hidden Markov models of nuclear receptors was used to identify a human nuclear receptor, termed hPAR, that is expressed in liver and intestines. hPAR was found to be efficiently activated by pregnanes and by clinically used drugs including rifampicin, an antibiotic known to selectively induce human but not murine CYP3A expression. The CYP3A drug-metabolizing enzymes are expressed in gut and liver in response to environmental chemicals and clinically used drugs. Interestingly, hPAR is not activated by pregnenolone 16α-carbonitrile, which is a potent inducer of murine CYP3A genes and an activator of the mouse receptor PXR.1. Furthermore, hPAR was found to bind to and trans-activate through a conserved regulatory sequence present in human but not murine CYP3A genes. These results provide evidence that hPAR and PXR.1 may represent orthologous genes from different species that have evolved to regulate overlapping target genes in response to pharmacologically distinct CYP3A activators, and have potential implications for the in vitro identification of drug interactions important to humans.
Resumo:
Continuous growth and development in plants are accomplished by meristems, groups of undifferentiated cells that persist as stem cells and initiate organs. While the structures of the apical and floral meristems in dicotyledonous plants have been well described, little is known about the underlying molecular mechanisms controlling cell proliferation and differentiation in these structures. We have shown previously that the CLAVATA1 (CLV1) gene in Arabidopsis encodes a receptor kinase-like protein that controls the size of the apical and floral meristems. Here, we show that KAPP, a gene encoding a kinase-associated protein phosphatase, is expressed in apical and young floral meristems, along with CLV1. Overexpression of KAPP mimics the clv1 mutant phenotype. Furthermore, CLV1 has kinase activity: it phosphorylates both itself and KAPP. Finally, KAPP binds and dephosphorylates CLV1. We present a model where KAPP functions as a negative regulator of the CLAVATA1 signal transduction pathway.
Resumo:
Exposure to cyclopamine, a steroid alkaloid that blocks Sonic hedgehog (Shh) signaling, promotes pancreatic expansion in embryonic chicks. Heterotopic development of pancreatic endocrine and exocrine structures occurs in regions adjacent to the pancreas including stomach and duodenum, and insulin-producing islets in the pancreas are enlarged. The homeodomain transcription factor PDX1, required for pancreas development, is expressed broadly in the posterior foregut but pancreas development normally initiates only in a restricted region of PDX1-expressing posterior foregut where endodermal Shh expression is repressed. The results suggests that cyclopamine expands the endodermal region where Shh signaling does not occur, resulting in pancreatic differentiation in a larger region of PDX1-expressing foregut endoderm. Cyclopamine reveals the capacity of a broad region of the posterior embryonic foregut to form pancreatic cells and provides a means for expanding embryonic pancreas development.
Resumo:
The Pto gene encodes a serine/threonine kinase that confers resistance in tomato to Pseudomonas syringae pv. tomato strains that express the avirulence gene avrPto. Partial characterization of the Pto signal transduction pathway and the availability of transgenic tomato lines (± Pto) make this an ideal system for exploring the molecular basis of disease resistance. In this paper, we test two transgenic tomato cell suspension cultures (±Pto) for production of H2O2 following independent challenge with two strains of P. syringae pv. tomato (±avrPto). Only when Pto and avrPto are present in the corresponding organisms are two distinct phases of the oxidative burst seen, a rapid first burst followed by a slower and more prolonged second burst. In the remaining three plant–pathogen interactions, we observe either no burst or only a first burst, indicating that the second burst is correlated with disease resistance. Further support for this observation comes from the finding that both resistant and susceptible tomato lines produce the critical second oxidative burst when challenged with P. syringae pv. tabaci, a nonhost pathogen that elicits a hypersensitive response on both tomato lines. The Pto kinase is not required, however, for the oxidative burst initiated by non-specific elicitors such as oligogalacturonides or osmotic stress. A model describing a possible role for the Pto kinase in the overall scheme of oxidative burst signaling is proposed.
Resumo:
STAT1 is an essential transcription factor for macrophage activation by IFN-γ and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-α occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-γ-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-γ-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-α caused activation of p38 MAPK whereas IFN-γ did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-α production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKα and β but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-γ-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK.
Resumo:
Estrogens are thought to regulate female reproductive functions by altering gene transcription in target organs primarily via the nuclear estrogen receptor-α (ER-α). By using ER-α “knock-out” (ERKO) mice, we demonstrate herein that a catecholestrogen, 4-hydroxyestradiol-17β (4-OH-E2), and an environmental estrogen, chlordecone (kepone), up-regulate the uterine expression of an estrogen-responsive gene, lactoferrin (LF), independent of ER-α. A primary estrogen, estradiol-17β (E2), did not induce this LF response. An estrogen receptor antagonist, ICI-182,780, or E2 failed to inhibit uterine LF gene expression induced by 4-OH-E2 or kepone in ERKO mice, which suggests that this estrogen signaling pathway is independent of both ER-α and the recently cloned ER-β. 4-OH-E2, but not E2, also stimulated increases in uterine water imbibition and macromolecule uptake in ovariectomized ERKO mice. The results strongly imply the presence of a distinct estrogen-signaling pathway in the mouse uterus that mediates the effects of both physiological and environmental estrogens. This estrogen response pathway will have profound implications for our understanding of the physiology and pathophysiology of female sex steroid hormone actions in target organs.
Resumo:
The androgen receptor (AR) binds to androgen response elements and regulates target genes via a mechanism involving coregulators. Here we demonstrate that the AR can interact with the testicular orphan receptor-4 (TR4) and function as a repressor to down-regulate the TR4 target genes by preventing the TR4 binding to its target DNA. Interestingly, the heterodimerization of AR and TR4 also allows TR4 to repress AR target gene expression. Simultaneous exposure to both receptors therefore could result in bidirectional suppression of their target genes. Together, these data demonstrate that the coupling of two different receptors, through the heterodimerization of AR and TR4, is a unique signaling pathway in the steroid receptor superfamily, which may facilitate further understanding of the complicated androgen action in prostate cancer or libido.
Resumo:
The TOR (target of rapamycin) signal transduction pathway is an important mechanism by which cell growth is controlled in all eucaryotic cells. Specifically, TOR signaling adjusts the protein biosynthetic capacity of cells according to nutrient availability. In mammalian cells, one branch of this pathway controls general translational initiation, whereas a separate branch specifically regulates the translation of ribosomal protein (r-protein) mRNAs. In Saccharomyces cerevisiae, the TOR pathway similarly regulates general translational initiation, but its specific role in the synthesis of ribosomal components is not well understood. Here we demonstrate that in yeast control of ribosome biosynthesis by the TOR pathway is surprisingly complex. In addition to general effects on translational initiation, TOR exerts drastic control over r-protein gene transcription as well as the synthesis and subsequent processing of 35S precursor rRNA. We also find that TOR signaling is a prerequisite for the induction of r-protein gene transcription that occurs in response to improved nutrient conditions. This induction has been shown previously to involve both the Ras-adenylate cyclase as well as the fermentable growth medium–induced pathways, and our results therefore suggest that these three pathways may be intimately linked.
Resumo:
We studied the signaling pathways coupling gonadotropin-releasing hormone (GnRH) secretion to elevations in cAMP levels in the GT1 GnRH-secreting neuronal cell line. We hypothesized that increased cAMP could be acting directly by means of cyclic nucleotide-gated (CNG) cation channels or indirectly by means of activation of cAMP-dependent protein kinase (PKA). We showed that GT1 cells express the three CNG subunits present in olfactory neurons (CNG2, -4.3, and -5) and exhibit functional cAMP-gated cation channels. Activation of PKA does not appear to be necessary for the stimulation of GnRH release by increased levels of cAMP. In fact, pharmacological inhibition of PKA activity caused an increase in the basal secretion of GnRH. Consistent with this observation activation PKA inhibited adenylyl cyclase activity, presumably by inhibiting adenylyl cyclase V expressed in the cells. Therefore, the stimulation of GnRH release by elevations in cAMP appears to be the result of depolarization of the neurons initiated by increased cation conductance by cAMP-gated cation channels. Activation of PKA may constitute a negative-feedback mechanisms for lowering cAMP levels. We hypothesize that these mechanisms could result in oscillations in cAMP levels, providing a biochemical basis for timing the pulsatile release of GnRH.
Resumo:
Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-β, a type β transforming growth factor (TGF-β) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose- as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF-β promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF-β was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF-β-overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF-β receptors or Smad4, suggesting that PTGF-β acts through the TGF-β signaling pathway. Thus, PTGF-β, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF-β signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-β.
Resumo:
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten−/− ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27KIP1, a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten−/− cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4,5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
Resumo:
It is well established that signal transduction in sensory neurons of the rat olfactory epithelium involves a cAMP-signaling pathway. However, a small number of olfactory neurons specifically express cGMP-signaling components, namely a guanylyl cyclase (GC-D) and a cGMP-stimulated phosphodiesterase (PDE2). Here, we show that this subset of olfactory neurons expressing GC-D and PDE2 does also express the subunit of a cGMP-selective cyclic nucleotide-gated (CNG) channel that has been previously identified in cone photoreceptors. Further, components of the prototypical cAMP-signaling pathway could not be detected in this subpopulation of cells. These results imply that these neurons use an alternative signaling pathway, with cGMP as the intracellular messenger, and that, in these cells, the receptor current is initiated by the opening of cGMP-gated channels.
Resumo:
c-Jun N-terminal kinases (JNKs) are potently activated by a number of cellular stimuli. Small GTPases, in particular Rac, are responsible for initiating the activation of the JNK pathways. So far, the signals leading from extracellular stimuli to the activation of Rac have remained elusive. Recent studies have demonstrated that the Src homology 2 (SH2)- and Src homology 3 (SH3)-containing adaptor protein Crk is capable of activating JNK when ectopically expressed. We found here that transient expression of Crk induces JNK activation, and this activation was dependent on both the SH2- and SH3-domains of Crk. Expression of p130Cas (Cas), a major binding protein for the Crk SH2-domain, also induced JNK activation, which was blocked by the SH2-mutant of Crk. JNK activation by Cas and Crk was effectively blocked by a dominant-negative form of Rac, suggesting for a linear pathway from the Cas-Crk-complex to the Rac-JNK activation. Many of the stimuli that activate the Rac-JNK pathway enhance engagement of the Crk SH2-domain. JNK activation by these stimuli, such as epidermal growth factor, integrin ligand binding and v-Src, was efficiently blocked by dominant-negative mutants of Crk. A dominant-negative form of Cas in turn blocked the integrin-, but not epidermal growth factor - nor v-Src-mediated JNK activation. Together, these results demonstrate an important role for Crk in connecting multiple cellular stimuli to the Rac-JNK pathway, and a role for the Cas-Crk complex in integrin-mediated JNK activation.