2 resultados para Heated cavity
em National Center for Biotechnology Information - NCBI
Resumo:
The chaperonin GroEL is an oligomeric double ring structure that, together with the cochaperonin GroES, assists protein folding. Biochemical analyses indicate that folding occurs in a cis ternary complex in which substrate is sequestered within the GroEL central cavity underneath GroES. Recently, however, studies of GroEL “minichaperones” containing only the apical substrate binding subdomain have questioned the functional importance of substrate encapsulation within GroEL-GroES complexes. Minichaperones were reported to assist folding despite the fact that they are monomeric and therefore cannot form a central cavity. Here we compare directly the folding activity of minichaperones with that of the full GroEL-GroES system. In agreement with earlier studies, minichaperones assist folding of some proteins. However, this effect is observed only under conditions where substantial spontaneous folding is also observed and is indistinguishable from that resulting from addition of the nonchaperone protein α-casein. By contrast, the full GroE system efficiently promotes folding of several substrates under conditions where essentially no spontaneous folding is observed. These data argue that the full GroEL folding activity requires the intact GroEL-GroES complex, and in light of previous studies, underscore the importance of substrate encapsulation for providing a folding environment distinct from the bulk solution.
Resumo:
Synthetic C peptides, corresponding to the C helix of the HIV type 1 (HIV-1) gp41 envelope protein, are potent inhibitors of HIV-1 membrane fusion. One such peptide is in clinical trials. The crystal structure of the gp41 core, in its proposed fusion-active conformation, is a trimer of helical hairpins in which three C helices pack against a central coiled coil. Each C helix shows especially prominent contacts with one of three symmetry-related, hydrophobic cavities on the surface of the coiled coil. We show that the inhibitory activity of the C peptide C34 depends on its ability to bind to this coiled-coil cavity. Moreover, examining a series of C34 peptide variants with modified cavity-binding residues, we find a linear relationship between the logarithm of the inhibitory potency and the stability of the corresponding helical-hairpin complexes. Our results provide strong evidence that this coiled-coil cavity is a good drug target and clarify the mechanism of C peptide inhibition. They also suggest simple, quantitative assays for the identification and evaluation of analogous inhibitors of HIV-1 entry.