3 resultados para Hearing impaired

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured the stability and stoichiometry of variants of the human p53 tetramerization domain to assess the effects of mutation on homo- and hetero-oligomerization. The residues chosen for mutation were those in the hydrophobic core that we had previously found to be critical for its stability but are not conserved in human p73 or p51 or in p53-related proteins from invertebrates or vertebrates. The mutations introduced were either single natural mutations or combinations of mutations present in p53-like proteins from different species. Most of the mutations were substantially destabilizing when introduced singly. The introduction of multiple mutations led to two opposite effects: some combinations of mutations that have occurred during the evolution of the hydrophobic core of the domain in p53-like proteins had additive destabilizing effects, whereas other naturally occurring combinations of mutations had little or no net effect on the stability, there being mutually compensating effects of up to 9.5 kcal/mol of tetramer. The triple mutant L332V/F341L/L344I, whose hydrophobic core represents that of the chicken p53 domain, was nearly as stable as the human domain but had impaired hetero-oligomerization with it. Thus, engineering of a functional p53 variant with a reduced capacity to hetero-oligomerize with wild-type human p53 can be achieved without any impairment in the stability and subunit affinity of the engineered homo-oligomer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CREB, the cAMP response element binding protein, is a key transcriptional regulator of a large number of genes containing a CRE consensus sequence in their upstream regulatory regions. Mice with a hypomorphic allele of CREB that leads to a loss of the CREBα and Δ isoforms and to an overexpression of the CREBβ isoform are viable. Herein we report the generation of CREB null mice, which have all functional isoforms (CREBα, β, and Δ) inactivated. In contrast to the CREBαΔ mice, CREB null mice are smaller than their littermates and die immediately after birth from respiratory distress. In brain, a strong reduction in the corpus callosum and the anterior commissures is observed. Furthermore, CREB null mice have an impaired fetal T cell development of the αβ lineage, which is not affected in CREBαΔ mice on embryonic day 18.5. Overall thymic cellularity in CREB null mice is severely reduced affecting all developmental stages of the αβ T cell lineage. In contrast γδ T cell differentiation is normal in CREB mutant mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic responses of the hearing organ to acoustic overstimulation were investigated using the guinea pig isolated temporal bone preparation. The organ was loaded with the fluorescent Ca2+ indicator Fluo-3, and the cochlear electric responses to low-level tones were recorded through a microelectrode in the scala media. After overstimulation, the amplitude of the cochlear potentials decreased significantly. In some cases, rapid recovery was seen with the potentials returning to their initial amplitude. In 12 of 14 cases in which overstimulation gave a decrease in the cochlear responses, significant elevations of the cytoplasmic [Ca2+] in the outer hair cells were seen. [Ca2+] increases appeared immediately after terminating the overstimulation, with partial recovery taking place in the ensuing 30 min in some preparations. Such [Ca2+] changes were not seen in preparations that were stimulated at levels that did not cause an amplitude change in the cochlear potentials. The overstimulation also gave rise to a contraction, evident as a decrease of the width of the organ of Corti. The average contraction in 10 preparations was 9 μm (SE 2 μm). Partial or complete recovery was seen within 30–45 min after the overstimulation. The [Ca2+] changes and the contraction are likely to produce major functional alterations and consequently are suggested to be a factor contributing strongly to the loss of function seen after exposure to loud sounds.