12 resultados para Health Sciences, Pharmacology|Chemistry, Biochemistry|Chemistry, Pharmaceutical
em National Center for Biotechnology Information - NCBI
Resumo:
Purpose: The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals.
Resumo:
This paper argues that historical works in pharmacy are important tools for the clinician as well as the historian. With this as its operative premise, delineating the tripartite aspects of pharmacy as a business enterprise, a science, and a profession provides a conceptual framework for primary and secondary resource collecting. A brief history and guide to those materials most essential to a historical collection in pharmacy follows. Issues such as availability and cost are discussed and summarized in checklist form. In addition, a glossary of important terms is provided as well as a list of all the major U.S. dispensatories and their various editions. This paper is intended to serve as a resource for those interested in collecting historical materials in pharmacy and pharmaco-therapeutics as well as provide a history that gives context to these classics in the field. This should provide a rationale for selective retrospective collection development in pharmacy.
Resumo:
The purpose of this study was to examine the current status of health sciences libraries in Kuwait in terms of their staff, collections, facilities, use of information technology, information services, and cooperation. Seventeen libraries participated in the study. Results show that the majority of health sciences libraries were established during the 1980s. Their collections are relatively small. The majority of their staff is nonprofessional. The majority of libraries provide only basic information services. Cooperation among libraries is limited. Survey results also indicate that a significant number of health sciences libraries are not automated. Some recommendations for the improvement of existing resources, facilities, and services are made.
Resumo:
A questionnaire was mailed to 148 publicly and privately supported academic health sciences libraries affiliated with Association of American Medical Colleges (AAMC)–accredited medical schools in the United States and Canada to determine level of access and services provided to the general public. For purposes of this study, “general public” was defined as nonaffiliated students or health care professionals, attorneys and other nonhealth-related professionals, patients from affiliated or other hospitals or clinics, and general consumers. One hundred five (71%) libraries responded. Results showed 98% of publicly supported libraries and 88% of privately supported libraries provided access to some or all of the general public. Publicly supported libraries saw greater numbers of public patrons, often provided more services, and were more likely to circulate materials from their collections than were privately supported libraries. A significant number of academic health sciences libraries housed a collection of consumer-oriented materials and many provided some level of document delivery service, usually for a fee. Most allowed the public to use some or all library computers. Results of this study indicated that academic health sciences libraries played a significant role in serving the information-seeking public and suggested a need to develop written policies or guidelines covering the services that will be provided to minimize the impact of this service on primary clientele.
Resumo:
Objective: To study the circulation of monographs during the first three years of shelf life at an academic health sciences library.
Resumo:
The major volatile component in the paracloacal glandular secretion of the adult African dwarf crocodile (Osteolaemus tetraspis) was isolated and characterized as a 19-carbon aromatic ketone, dianeackerone (3,7-diethyl-9-phenyl-2-nonanone). This ketone is absent from the secretion of immatures. Careful examination of dianeackerone samples isolated from individual adults revealed that this ketone occurs as both the (3S, 7S) and (3S, 7R) stereoisomers, with different individuals presenting strikingly different ratios of the isomeric forms. Our initial suspicion that the stereoisomeric dianeackerones might be indicators of gender proved untenable, leaving the role of these glandular constituents a challenge for future study.
Resumo:
The African dwarf crocodile, Osteolaemus tetraspis (Crocodilidae, Reptilia), possesses a pair of skin glands, the paracloacal glands, the secretion of which is thought to be used to mark nest sites or attract mates. Ten aromatic steroidal esters were isolated from this secretion and characterized on the basis of NMR spectroscopic investigations, electrospray ionization-MS analyses, and chemical degradation. These esters, which account for more than 90% of the paracloacal glandular secretion, are derived from either cholesterol or cholestanol, esterified with a C-20 or C-22 acid closely related to dianeackerone, the only significant volatile compound found in this secretion.
Resumo:
The link between recognition and replication is fundamental to the operation of the immune system. In recent years, modeling this process in a format of phage-display combinatorial libraries has afforded a powerful tool for obtaining valuable antibodies. However, the ability to readily select and isolate rare catalysts would expand the scope of library technology. A technique in which phage infection controlled the link between recognition and replication was applied to show that chemistry is a selectable process. An antibody that operated by covalent catalysis to form an acyl intermediate restored phage infectivity and allowed selection from a library in which the catalyst constituted 1 in 105 members. Three different selection approaches were examined for their convenience and generality. Incorporating these protocols together with well known affinity labels and mechanism-based inactivators should allow the procurement of a wide range of novel catalytic antibodies.
Resumo:
S-Nitrosothiols have generated considerable interest due to their ability to act as nitric oxide (NO) donors and due to their possible involvement in bioregulatory systems—e.g., NO transfer reactions. Elucidation of the reaction pathways involved in the modification of the thiol group by S-nitrosothiols is important for understanding the role of S-nitroso compounds in vivo. The modification of glutathione (GSH) in the presence of S-nitrosoglutathione (GSNO) was examined as a model reaction. Incubation of GSNO (1 mM) with GSH at various concentrations (1–10 mM) in phosphate buffer (pH 7.4) yielded oxidized glutathione, nitrite, nitrous oxide, and ammonia as end products. The product yields were dependent on the concentrations of GSH and oxygen. Transient signals corresponding to GSH conjugates, which increased by one mass unit when the reaction was carried out with 15N-labeled GSNO, were identified by electrospray ionization mass spectrometry. When morpholine was present in the reaction system, N-nitrosomorpholine was formed. Increasing concentrations of either phosphate or GSH led to lower yields of N-nitrosomorpholine. The inhibitory effect of phosphate may be due to reaction with the nitrosating agent, nitrous anhydride (N2O3), formed by oxidation of NO. This supports the release of NO during the reaction of GSNO with GSH. The products noted above account quantitatively for virtually all of the GSNO nitrogen consumed during the reaction, and it is now possible to construct a complete set of pathways for the complex transformations arising from GSNO + GSH.
Resumo:
Selenium has been increasingly recognized as an essential element in biology and medicine. Its biochemistry resembles that of sulfur, yet differs from it by virtue of both redox potentials and stabilities of its oxidation states. Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an important role in more than a dozen selenoproteins. We have chosen to examine zinc–sulfur centers as possible targets of selenium redox biochemistry. Selenium compounds release zinc from zinc/thiolate-coordination environments, thereby affecting the cellular thiol redox state and the distribution of zinc and likely of other metal ions. Aromatic selenium compounds are excellent spectroscopic probes of the otherwise relatively unstable functional selenium groups. Zinc-coordinated thiolates, e.g., metallothionein (MT), and uncoordinated thiolates, e.g., glutathione, react with benzeneseleninic acid (oxidation state +2), benzeneselenenyl chloride (oxidation state 0) and selenocystamine (oxidation state −1). Benzeneseleninic acid and benzeneselenenyl chloride react very rapidly with MT and titrate substoichiometrically and with a 1:1 stoichiometry, respectively. Selenium compounds also catalyze the release of zinc from MT in peroxidation and thiol/disulfide-interchange reactions. The selenoenzyme glutathione peroxidase catalytically oxidizes MT and releases zinc in the presence of t-butyl hydroperoxide, suggesting that this type of redox chemistry may be employed in biology for the control of metal metabolism. Moreover, selenium compounds are likely targets for zinc/thiolate coordination centers in vivo, because the reactions are only partially suppressed by excess glutathione. This specificity and the potential to undergo catalytic reactions at low concentrations suggests that zinc release is a significant aspect of the therapeutic antioxidant actions of selenium compounds in antiinflammatory and anticarcinogenic agents.