2 resultados para Harvilahti, Lauri: The holy mountain

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Richmond Mine of the Iron Mountain copper deposit contains some of the most acid mine waters ever reported. Values of pH have been measured as low as −3.6, combined metal concentrations as high as 200 g/liter, and sulfate concentrations as high as 760 g/liter. Copious quantities of soluble metal sulfate salts such as melanterite, chalcanthite, coquimbite, rhomboclase, voltaite, copiapite, and halotrichite have been identified, and some of these are forming from negative-pH mine waters. Geochemical calculations show that, under a mine-plugging remediation scenario, these salts would dissolve and the resultant 600,000-m3 mine pool would have a pH of 1 or less and contain several grams of dissolved metals per liter, much like the current portal effluent water. In the absence of plugging or other at-source control, current weathering rates indicate that the portal effluent will continue for approximately 3,000 years. Other remedial actions have greatly reduced metal loads into downstream drainages and the Sacramento River, primarily by capturing the major acidic discharges and routing them to a lime neutralization plant. Incorporation of geochemical modeling and mineralogical expertise into the decision-making process for remediation can save time, save money, and reduce the likelihood of deleterious consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A densely sampled, diverse new fauna from the uppermost Cedar Mountain Formation, Utah, indicates that the basic pattern of faunal composition for the Late Cretaceous of North America was already established by the Albian-Cenomanian boundary. Multiple, concordant 40Ar/39Ar determinations from a volcanic ash associated with the fauna have an average age of 98.39 ± 0.07 million years. The fauna of the Cedar Mountain Formation records the first global appearance of hadrosaurid dinosaurs, advanced lizard (e.g., Helodermatidae), and mammal (e.g., Marsupialia) groups, and the first North American appearance of other taxa such as tyrannosaurids, pachycephalosaurs, and snakes. Although the origin of many groups is unclear, combined biostratigraphic and phylogenetic evidence suggests an Old World, specifically Asian, origin for some of the taxa, an hypothesis that is consistent with existing evidence from tectonics and marine invertebrates. Large-bodied herbivores are mainly represented by low-level browsers, ornithopod dinosaurs, whose radiations have been hypothesized to be related to the initial diversification of angiosperm plants. Diversity at the largest body sizes (>106 g) is low, in contrast to both preceding and succeeding faunas; sauropods, which underwent demise in the Northern hemisphere coincident with the radiation of angiosperms, apparently went temporarily unreplaced by other megaherbivores. Morphologic and taxonomic diversity among small, omnivorous mammals, multituberculates, is also low. A later apparent increase in diversity occurred during the Campanian, coincident with the appearance of major fruit types among angiosperms, suggesting the possibility of adaptive response to new resources.