2 resultados para Handicap

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent signaling resolution models of parent–offspring conflict have provided an important framework for theoretical and empirical studies of communication and parental care. According to these models, signaling of need is stabilized by its cost. However, our computer simulations of the evolutionary dynamics of chick begging and parental investment show that in Godfray’s model the signaling equilibrium is evolutionarily unstable: populations that start at the signaling equilibrium quickly depart from it. Furthermore, the signaling and nonsignaling equilibria are linked by a continuum of equilibria where chicks above a certain condition do not signal and we show that, contrary to intuition, fitness increases monotonically as the proportion of young that signal decreases. This result forces us to reconsider much of the current literature on signaling of need and highlights the need to investigate the evolutionary stability of signaling equilibria based on the handicap principle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cocaine exposure in utero causes severe alterations in the development of the central nervous system. To study the basis of these teratogenic effects in vitro, we have used cocultures of neurons and glial cells from mouse embryonic brain. Cocaine selectively affected embryonic neuronal cells, causing first a dramatic reduction of both number and length of neurites and then extensive neuronal death. Scanning electron microscopy demonstrated a shift from a multipolar neuronal pattern towards bi- and unipolarity prior to the rounding up and eventual disappearance of the neurons. Selective toxicity of cocaine on neurons was paralleled by a concomitant decrease of the culture content in microtubule-associated protein 2 (MAP2), a neuronal marker measured by solid-phase immunoassay. These effects on neurons were reversible when cocaine was removed from the culture medium. In contrast, cocaine did not affect astroglial cells and their glial fibrillary acidic protein (GFAP) content. Thus, in embryonic neuronal-glial cell cocultures, cocaine induces major neurite perturbations followed by neuronal death without affecting the survival of glial cells. Provided similar neuronal alterations are produced in the developing human brain, they could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following in utero exposure to cocaine.