3 resultados para Hamilton Traveling-Salesman Problem
em National Center for Biotechnology Information - NCBI
Resumo:
Dynamic importance weighting is proposed as a Monte Carlo method that has the capability to sample relevant parts of the configuration space even in the presence of many steep energy minima. The method relies on an additional dynamic variable (the importance weight) to help the system overcome steep barriers. A non-Metropolis theory is developed for the construction of such weighted samplers. Algorithms based on this method are designed for simulation and global optimization tasks arising from multimodal sampling, neural network training, and the traveling salesman problem. Numerical tests on these problems confirm the effectiveness of the method.
Resumo:
Bacteria that swim without the benefit of flagella might do so by generating longitudinal or transverse surface waves. For example, swimming speeds of order 25 microns/s are expected for a spherical cell propagating longitudinal waves of 0.2 micron length, 0.02 micron amplitude, and 160 microns/s speed. This problem was solved earlier by mathematicians who were interested in the locomotion of ciliates and who considered the undulations of the envelope swept out by ciliary tips. A new solution is given for spheres propagating sinusoidal waveforms rather than Legendre polynomials. The earlier work is reviewed and possible experimental tests are suggested.
Resumo:
The evolutionary stability of cooperation is a problem of fundamental importance for the biological and social sciences. Different claims have been made about this issue: whereas Axelrod and Hamilton's [Axelrod, R. & Hamilton, W. (1981) Science 211, 1390-1398] widely recognized conclusion is that cooperative rules such as "tit for tat" are evolutionarily stable strategies in the iterated prisoner's dilemma (IPD), Boyd and Lorberbaum [Boyd, R. & Lorberbaum, J. (1987) Nature (London) 327, 58-59] have claimed that no pure strategy is evolutionarily stable in this game. Here we explain why these claims are not contradictory by showing in what sense strategies in the IPD can and cannot be stable and by creating a conceptual framework that yields the type of evolutionary stability attainable in the IPD and in repeated games in general. Having established the relevant concept of stability, we report theorems on some basic properties of strategies that are stable in this sense. We first show that the IPD has "too many" such strategies, so that being stable does not discriminate among behavioral rules. Stable strategies differ, however, on a property that is crucial for their evolutionary survival--the size of the invasion they can resist. This property can be interpreted as a strategy's evolutionary robustness. Conditionally cooperative strategies such as tit for tat are the most robust. Cooperative behavior supported by these strategies is the most robust evolutionary equilibrium: the easiest to attain, and the hardest to disrupt.