3 resultados para Half-metallicity

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Δ1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Δ1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half ATP-binding cassette (ABC) transporters in the human peroxisome membrane. ALDP and PMP70 share sequence homology and both are implicated in genetic diseases. PXA1 and YKL741 are Saccharomyces cerevisiae genes that encode homologs of ALDP and PMP70. Pxa1p, a putative ortholog of ALDP, is involved in peroxisomal beta-oxidation of fatty acids while YKL741 is an open reading frame found by the yeast genome sequencing project. Here we designate YKL741 as PXA2 and show that its protein product, Pxa2p, like Pxa1p, is associated with peroxisomes but not required for their assembly. Yeast strains carrying gene disruption of PXA1, PXA2, or both have similar and, in the case of the latter, nonadditive phenotypes. We also find that the stability of Pxa1p, but not Pxa2p, is markedly reduced in the absence of the other. Finally, we find that Pxa1p and Pxa2p coimmuno-precipitate. These genetic and physical data suggest that Pxa1p and Pxa2p heterodimerize to form a complete peroxisomal ABC transporter involved in fatty acid beta-oxidation. This result predicts the presence of similar heterodimeric ABC transporters in the mammalian peroxisome membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A maximum likelihood approach of half tetrad analysis (HTA) based on multiple restriction fragment length polymorphism (RFLP) markers was developed. This procedure estimates the relative frequencies of 2n gametes produced by mechanisms genetically equivalent to first division restitution (FDR) or second division restitution and simultaneously locates the centromere within a linkage group of RFLP marker loci. The method was applied to the diploid alfalfa clone PG-F9 (2n = 2x = 16) previously selected because of its high frequency of 2n egg production. HTA was based on four RFLP loci for which PG-F9 was heterozygous with codominant alleles that were absent in the tetraploid tester. Models including three linked and one unlinked RFLP loci were developed and tested. Results of the HTA showed that PG-F9 produced 6% FDR and 94% second division restitution 2n eggs. Information from a marker locus belonging to one linkage group was used to more precisely locate the centromere on a different linkage group. HTA, together with previous cytological analysis, indicated that in PG-F9, FDR 2n eggs are likely produced by diplospory, a mechanism common among apomictic species. The occurrence of FDR 2n eggs in plant species and their importance for crop evolution and breeding is discussed together with the potential applicability of multilocus HTA in the study of reproductive mutants.