5 resultados para HYDROCARBON
em National Center for Biotechnology Information - NCBI
Resumo:
A physiological examination of mice harboring a null allele at the aryl hydrocarbon (Ah) locus revealed that the encoded aryl hydrocarbon receptor plays a role in the resolution of fetal vascular structures during development. Although the aryl hydrocarbon receptor is more commonly studied for its role in regulating xenobiotic metabolism and dioxin toxicity, a developmental role of this protein is supported by the observation that Ah null mice display smaller livers, reduced fecundity, and decreased body weights. Upon investigating the liver phenotype, we found that the decrease in liver size is directly related to a reduction in hepatocyte size. We also found that smaller hepatocyte size is the result of massive portosystemic shunting in null animals. Colloidal carbon uptake and microsphere perfusion studies indicated that 56% of portal blood flow bypasses the liver sinusoids. Latex corrosion casts and angiography demonstrated that shunting is consistent with the existence of a patent ductus venosus in adult animals. Importantly, fetal vascular structures were also observed at other sites. Intravital microscopy demonstrated an immature sinusoidal architecture in the liver and persistent hyaloid arteries in the eyes of adult Ah null mice, whereas corrosion casting experiments described aberrations in kidney vascular patterns.
Resumo:
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor through which halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause altered gene expression and toxicity. The AHR belongs to the basic helix–loop–helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulatory proteins, whose members play key roles in development, circadian rhythmicity, and environmental homeostasis; however, the normal cellular function of the AHR is not yet known. As part of a phylogenetic approach to understanding the function and evolutionary origin of the AHR, we sequenced the PAS homology domain of AHRs from several species of early vertebrates and performed phylogenetic analyses of these AHR amino acid sequences in relation to mammalian AHRs and 24 other members of the PAS family. AHR sequences were identified in a teleost (the killifish Fundulus heteroclitus), two elasmobranch species (the skate Raja erinacea and the dogfish Mustelus canis), and a jawless fish (the lamprey Petromyzon marinus). Two putative AHR genes, designated AHR1 and AHR2, were found both in Fundulus and Mustelus. Phylogenetic analyses indicate that the AHR2 genes in these two species are orthologous, suggesting that an AHR gene duplication occurred early in vertebrate evolution and that multiple AHR genes may be present in other vertebrates. Database searches and phylogenetic analyses identified four putative PAS proteins in the nematode Caenorhabditis elegans, including possible AHR and ARNT homologs. Phylogenetic analysis of the PAS gene family reveals distinct clades containing both invertebrate and vertebrate PAS family members; the latter include paralogous sequences that we propose have arisen by gene duplication early in vertebrate evolution. Overall, our analyses indicate that the AHR is a phylogenetically ancient protein present in all living vertebrate groups (with a possible invertebrate homolog), thus providing an evolutionary perspective to the study of dioxin toxicity and AHR function.
Resumo:
The cuticular hydrocarbon (CH) pheromones in Drosophila melanogaster exhibit strong geographic variation. African and Caribbean populations have a high ratio of 5,9 heptacosadiene/7,11 heptacosadiene (the “High” CH type), whereas populations from all other areas have a low ratio (“Low” CH type). Based on previous genetic mapping, DNA markers were developed that localized the genetic basis of this CH polymorphism to within a 13-kb region. We then carried out a hierarchical search for diagnostic nucleotide sites starting with four lines, and increasing to 24 and 43 lines from a worldwide collection. Within the 13-kb region, only one variable site shows a complete concordance with the CH phenotype. This is a 16-bp deletion in the 5′ region of a desaturase gene (desat2) that was recently suggested to be responsible for the CH polymorphism on the basis of its expression [Dallerac, R., Labeur, C., Jallon, J.-M., Knipple, D. C., Roelofs, W. L. & Wicker-Thomas, C. (2000) Proc. Natl. Acad. Sci. 97, 9449–9454]. The cosmopolitan Low type is derived from the ancestral High type, and DNA sequence variations suggest that the former spread worldwide with the aid of positive selection. Whether this CH variation could be a component of the sexual isolation between Zimbabwe and other cosmopolitan populations remains an interesting and unresolved question.
Resumo:
Illite is a general term for the dioctahedral mica-like clay mineral common in sedimentary rocks, especially shales. Illite is of interest to the petroleum industry because it can provide a K-Ar isotope date that constrains the timing of basin heating events. It is critical to establish that hydrocarbon formation and migration occurred after the formation of the trap (anticline, etc.) that is to hold the oil. Illite also may precipitate in the pores of sandstone reservoirs, impeding fluid flow. Illite in shales is a mixture of detrital mica and its weathering products with diagenetic illite formed by reaction with pore fluids during burial. K-Ar ages are apparent ages of mixtures of detrital and diagenetic end members, and what we need are the ages of the end members themselves. This paper describes a methodology, based on mineralogy and crystallography, for interpreting the K-Ar ages from illites in sedimentary rocks and for estimating the ages of the end members.
Resumo:
Mouse skin tumors contain activated c-H-ras oncogenes, often caused by point mutations at codons 12 and 13 in exon 1 and codons 59 and 61 in exon 2. Mutagenesis by the noncoding apurinic sites can produce G-->T and A-->T transversions by DNA misreplication with more frequent insertion of deoxyadenosine opposite the apurinic site. Papillomas were induced in mouse skin by several aromatic hydrocarbons, and mutations in the c-H-ras gene were determined to elucidate the relationship among DNA adducts, apurinic sites, and ras oncogene mutations. Dibenzo[a,l]pyrene (DB[a,l]P), DB[a,l]P-11,12-dihydrodiol, anti-DB[a,l]P-11,12-diol-13,14-epoxide, DB[a,l]P-8,9-dihydrodiol, 7,12-dimethylbenz[a]anthracene (DMBA), and 1,2,3,4-tetrahydro-DMBA consistently induced a CAA-->CTA mutation in codon 61 of the c-H-ras oncogene. Benzo[a]pyrene induced a GGC-->GTC mutation in codon 13 in 54% of tumors and a CAA-->CTA mutation in codon 61 in 15%. The pattern of mutations induced by each hydrocarbon correlated with its profile of DNA adducts. For example, both DB[a,l]P and DMBA primarily form DNA adducts at the N-3 and/or N-7 of deoxyadenosine that are lost from the DNA by depurination, generating apurinic sites. Thus, these results support the hypothesis that misreplication of unrepaired apurinic sites generated by loss of hydrocarbon-DNA adducts is responsible for transforming mutations leading to papillomas in mouse skin.