76 resultados para HUMAN-PAPILLOMAVIRUS-16

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of genomic integrity is a defining feature of many human malignancies, including human papillomavirus (HPV)-associated preinvasive and invasive genital squamous lesions. Here we show that aberrant mitotic spindle pole formation caused by abnormal centrosome numbers represents an important mechanism in accounting for numeric chromosomal alterations in HPV-associated carcinogenesis. Similar to what we found in histopathological specimens, HPV-16 E6 and E7 oncoproteins cooperate to induce abnormal centrosome numbers, aberrant mitotic spindle pole formation, and genomic instability. The low-risk HPV-6 E6 and E7 proteins did not induce such abnormalities. Whereas the HPV-16 E6 oncoprotein has no immediate effects on centrosome numbers, HPV-16 E7 rapidly induces abnormal centrosome duplication. Thus our results suggest a model whereby HPV-16 E7 induces centrosome-related mitotic disturbances that are potentiated by HPV-16 E6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-risk human papillomaviruses (HPVs), including type 16, have been identified as factors in cervical carcinogenesis. However, the presence and expression of the virus per se appear to be insufficient for carcinogenesis. Rather, cofactors most likely are necessary in addition to viral gene expression to initiate neoplasia. One candidate cofactor is prolonged exposure to sex hormones. To examine the possible effects of estrogen on HPV-associated neoplasia, we treated transgenic mice expressing the oncogenes of HPV16 under control of the human keratin-14 promoter (K14-HPV16 transgenic mice) and nontransgenic control mice with slow release pellets of 17beta-estradiol. Squamous carcinomas developed in a multistage pathway exclusively in the vagina and cervix of K14-HPV16 transgenic mice. Estrogen-induced carcinogenesis was accompanied by an incremental increase in the incidence and distribution of proliferating cells solely within the cervical and vaginal squamous epithelium of K14-HPV16 mice. Expression of the HPV transgenes in untreated transgenic mice was detectable only during estrus; estrogen treatment resulted in transgene expression that was persistent but not further upregulated, remaining at low levels at all stages of carcinogenesis. The data demonstrate a novel mechanism of synergistic cooperation between chronic estrogen exposure and the oncogenes of HPV16 that coordinates squamous carcinogenesis in the female reproductive tract of K14-HPV16 transgenic mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the majority of cervical cancers, DNAs of high-risk mucosotpropic human papillomaviruses (HPVs), such as type 16, are maintained so as to express two viral proteins, E6 and E7, suggesting an essential importance to carcinogenesis. The high-risk HPV E6 proteins are known to inactivate p53 tumor suppressor protein but appear to have an additional, molecularly unknown function(s). In this study, we demonstrate that these E6 proteins can bind to the second PDZ domain of the human homologue of the Drosophila discs large tumor suppressor protein (hDLG) through their C-terminal XS/TXV/L (where X represents any amino acid, S/T serine or threonine, and V/L valine or leucine) motif. This finding is similar to the interaction between the adenomatous polyposis coli gene product and hDLG. E6 mutants losing the ability to bind to hDLG are no longer able to induce E6-dependent transformation of rodent cells. These results suggest an intriguing possibility that interaction between the E6 protein and hDLG or other PDZ domain-containing proteins could be an underlying mechanism in the development of HPV-associated cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhinoviruses are a frequent cause of the common cold. A series of antirhinoviral compounds have been developed that bind into a hydrophobic pocket in the viral capsid, stabilizing the capsid and interfering with cell attachment. The structures of a variety of such compounds, complexed with rhinovirus serotypes 14, 16, 1A, and 3, previously have been examined. Three chemically similar compounds, closely related to a drug that is undergoing phase III clinical trials, were chosen to determine the structural impact of the heteroatoms in one of the three rings. The compounds were found to have binding modes that depend on their electronic distribution. In the compound with the lowest efficacy, the terminal ring is displaced by 1 Å and rotated by 180° relative to the structure of the other two. The greater polarity of the terminal ring in one of the three compounds leads to a small displacement of its position relative to the other compounds in the hydrophobic end of the antiviral compound binding pocket to a site where it makes fewer interactions. Its lower efficacy is likely to be the result of the reduced number of interactions. A region of conserved residues has been identified near the entrance to the binding pocket where there is a corresponding conservation of the mode of binding of these compounds to different serotypes. Thus, variations in residues lining the more hydrophobic end of the pocket are primarily responsible for the differences in drug efficacies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular senescence is defined by the limited proliferative capacity of normal cultured cells. Immortal cells overcome this regulation and proliferate indefinitively. One step in the immortalization process may be reactivation of telomerase activity, a ribonucleoprotein complex, which, by de novo synthesized telomeric TTAGGG repeats, can prevent shortening of the telomeres. Here we show that immortal human skin keratinocytes, irrespective of whether they were immortalized by simian virus 40, human papillomavirus 16, or spontaneously, as well as cell lines established from human skin squamous cell carcinomas exhibit telomerase activity. Unexpectedly, four of nine samples of intact human skin also were telomerase positive. By dissecting the skin we could show that the dermis and cultured dermal fibroblasts were telomerase negative. The epidermis and cultured skin keratinocytes, however, reproducibly exhibited enzyme activity. By separating different cell layers of the epidermis this telomerase activity could be assigned to the proliferative basal cells. Thus, in addition to hematopoietic cells, the epidermis, another example of a permanently regenerating human tissue, provides a further exception of the hypothesis that all normal human somatic tissues are telomerase deficient. Instead, these data suggest that in addition to contributing to the permanent proliferation capacity of immortal and tumor-derived keratinocytes, telomerase activity may also play a similar role in the lifetime regenerative capacity of normal epidermis in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple mammary epithelial cell (MEC) types are observed both in mammary ducts in vivo and in primary cultures in vitro; however, the oncogenic potential of different cell types remains unknown. Here, we used human papilloma virus 16 E6 and E7 oncogenes, which target p53 and Rb tumor suppressor proteins, respectively, to immortalize MECs present in early or late passages of human mammary tissue-derived cultures or in milk. One MEC subtype was exclusively immortalized by E6; such cells predominated in late-passage cultures but were rare at early passages and apparently absent in milk. Surprisingly, a second cell type, present only in early-passage tissue-derived cultures, was fully immortalized by E7 alone. A third cell type, observed in tissue-derived cultures and in milk, showed a substantial extension of life span with E7 but eventually senesced. Finally, both E6 and E7 were required to fully immortalize milk-derived MECs and a large proportion of MECs in early-passage tissue-derived cultures, suggesting the presence of another discrete subpopulation. Identification of MECs with distinct susceptibilities to p53- and Rb-targeting human papillomavirus oncogenes raises the possibility that these cells may serve as precursors for different forms of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human papillomavirus (HPV) types 16, 18, 31, and 51 are the etiologic agents of many anogenital cancers including those of the cervix. These "high risk" HPVs specifically target genital squamous epithelia, and their lytic life cycle is closely linked to epithelial differentiation. We have developed a genetic assay for HPV functions during pathogenesis using recircularized cloned HPV 31 genomes that were transfected together with a drug resistance marker into monolayer cultures of normal human foreskin keratinocytes, the natural host cell. After drug selection, cell lines were isolated that stably maintained HPV 31 DNA as episomes and underwent terminal differentiation when grown in organotypic raft cultures. In differentiated rafts, the expression of late viral genes, amplification of viral DNA, and production of viral particles were detected in suprabasal cells. This demonstrated the ability to synthesize HPV 31 virions from transfected DNA templates and allowed an examination of HPV functions during the vegetative viral life cycle. We then used this system to investigate whether an episomal genome was required for the induction of late viral gene expression. When an HPV 31 genome (31E1*) containing a missense mutation in the E1 open reading frame was transfected into normal human keratinocytes, the mutant viral sequences were found to integrate into the host cell chromosomal DNA with both early and late regions intact. While high levels of early viral gene transcription were observed, no late gene expression was detected in rafts of cell lines containing the mutant viral genome despite evidence of terminal differentiation. Therefore, the induction of late viral gene expression required that the viral genomes be maintained as extrachromosomal elements, and terminal differentiation alone was not sufficient. These studies provide the basis for a detailed examination of HPV functions during viral pathogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

After exposure to DNA-damaging agents, the p53 tumor suppressor protects against neoplastic transformation by inducing growth arrest and apoptosis. A series of investigations has also demonstrated that, in UV-exposed cells, p53 regulates the removal of DNA photoproducts from the genome overall (global nucleotide excision repair), but does not participate in an overlapping pathway that removes damage specifically from the transcribed strand of active genes (transcription-coupled nucleotide excision repair). Here, the highly sensitive ligation-mediated PCR was employed to quantify, at nucleotide resolution, the repair of UVB-induced cyclobutane pyrimidine dimers (CPDs) in genetically p53-deficient Li–Fraumeni skin fibroblasts, as well as in human lung fibroblasts expressing the human papillomavirus (HPV) E6 oncoprotein that functionally inactivates p53. Lung fibroblasts expressing the HPV E7 gene product, which similarly inactivates the retinoblastoma tumor-suppressor protein (pRb), were also investigated. pRb acts downstream of p53 to mediate G1 arrest, but has no demonstrated role in DNA repair. Relative to normal cells, HPV E6-expressing lung fibroblasts and Li–Fraumeni skin fibroblasts each manifested defective CPD repair along both the transcribed and nontranscribed strands of the p53 and/or c-jun loci. HPV E7-expressing lung fibroblasts also exhibited reduced CPD removal, but only along the nontranscribed strand. Our results provide striking evidence that transcription-coupled repair, in addition to global repair, are p53-dependent in UV-exposed human fibroblasts. Moreover, the observed DNA-repair defect in HPV E7-expressing cells reveals a function for this oncoprotein in HPV-mediated carcinogenesis, and may suggest a role for pRb in global nucleotide excision repair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By using sensitive homology-search and gene-finding programs, we have found that a genomic region from the tip of the short arm of human chromosome 16 (16p13.3) encodes a putative secreted protein consisting of a domain related to the whey acidic protein (WAP) domain, a domain homologous with follistatin modules of the Kazal-domain family (FS module), an immunoglobulin-related domain (Ig domain), two tandem domains related to Kunitz-type protease inhibitor modules (KU domains), and a domain belonging to the recently defined NTR-module family (NTR domain). The gene encoding these WAP, FS, Ig, KU, and NTR modules (hereafter referred to as the WFIKKN gene) is intron-depleted—its single 1,157-bp intron splits the WAP module. The validity of our gene prediction was confirmed by sequencing a WFIKKN cDNA cloned from a lung cDNA library. Studies on the tissue-expression pattern of the WFIKKN gene have shown that the gene is expressed primarily in pancreas, kidney, liver, placenta, and lung. As to the function of the WFIKKN protein, it is noteworthy that it contains FS, WAP, and KU modules, i.e., three different module types homologous with domains frequently involved in inhibition of serine proteases. The protein also contains an NTR module, a domain type implicated in inhibition of zinc metalloproteinases of the metzincin family. On the basis of its intriguing homologies, we suggest that the WFIKKN protein is a multivalent protease inhibitor that may control the action of multiple types of serine proteases as well as metalloproteinase(s).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DNA molecules undergoing transformation into yeast are highly recombinogenic, even when diverged. We reasoned that transformation-associated recombination (TAR) could be employed to clone large DNAs containing repeat sequences, thereby eliminating the need for in vitro enzymatic reactions such as restriction and ligation and reducing the amount of DNA handling. Gently isolated human DNA was transformed directly into yeast spheroplasts along with two genetically marked (M1 and M2) linearized vectors that contained a human Alu sequence at one end and a telomere sequence at the other end (Alu-CEN-M1-TEL and Alu-M2-TEL). Nearly all the M1-selected transformants had yeast artificial chromosomes (YACs) containing human DNA inserts that varied in size from 70 kb to > 600 kb. Approximately half of these had also acquired the unselected M2 marker. The mitotic segregational stability of YACs generated from one (M1) or two (M1 and M2) vector(s) was comparable, suggesting de novo generation of telomeric ends. Since no YACs were isolated when rodent DNAs or a vector lacking an Alu sequence was used, the YACs were most likely the consequence of TAR between the repeat elements on the vector(s) and the human DNA. Using the BLUR13 Alu-containing vector, we demonstrated that human DNA could be efficiently cloned from mouse cells that contained a single human chromosome 16. The distribution of cloned DNAs on chromosome 16 was determined by fluorescence in situ hybridization. We propose that TAR cloning can provide an efficient means for generating YACs from specific chromosomes and subchromosome fragments and that TAR cloning may be useful for isolating families of genes and specific genes from total genome DNA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The E6 protein of the high-risk human papillomaviruses inactivates the tumor suppressor protein p53 by stimulating its ubiquitinylation and subsequent degradation. Ubiquitinylation is a multistep process involving a ubiquitin-activating enzyme, one of many distinct ubiquitin-conjugating enzymes, and in certain cases, a ubiquitin ligase. In human papillomavirus-infected cells, E6 and the E6-associated protein are thought to act as a ubiquitin-protein ligase in the ubiquitinylation of p53. Here we describe the cloning of a human ubiquitin-conjugating enzyme that specifically ubiquitinylates E6-associated protein. Furthermore, we define the biochemical pathway of p53 ubiquitinylation and demonstrate that in vivo inhibition of various components in the pathway leads to an inhibition of E6-stimulated p53 degradation.