11 resultados para HSP

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gene encoding the rice 16.9-kDa class I low-molecular-mass (LMM) heat-shock protein (HSP), Oshsp16.9, was introduced into Escherichia coli using the pGEX-2T expression vector to analyze the possible function of this LMM HSP under heat stress. It is known that E. coli does not normally produce class I LMM HSPs. We compared the survivability of E. coli XL1-Blue cells transformed with a recombinant plasmid containing a glutathione S-transferase (GST)–Oshsp16.9 fusion protein (pGST-FL cells) with the control E. coli cells transformed with the pGEX-2T vector (pGST cells) under heat-shock (HS) after isopropyl β-d-thiogalactopyranoside induction. The pGST-FL cells demonstrated thermotolerance at 47.5°C, a treatment that was lethal to the pGST cells. When the cell lysates from these two E. coli transformants were heated at 55°C, the amount of protein denatured in the pGST-FL cells was 50% less than that of the pGST cells. Similar results as pGST-FL cells were obtained in pGST-N78 cells (cells produced a fusion protein with only the N-terminal 78 aa in the Oshsp16.9 portion) but not in pGST-C108 cells (cells produced a fusion protein with C-terminal 108 aa in the Oshsp16.9 portion). The acquired thermotolerant pGST-FL cells synthesized three types of HSPs, including the 76-, 73-, and 64-kDa proteins according to their abundance at a lethal temperature of 47.5°C. This finding indicates that a plant class I LMM HSP, when effectively expressed in transformed prokaryotic cells that do not normally synthesize this class of LMM HSPs, may directly or indirectly increase thermotolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mice immunized with heat shock proteins (hsps) isolated from mouse tumor cells (donor cells) produce CD8 cytotoxic T lymphocytes (CTL) that recognize donor cell peptides in association with the major histocompatibility complex (MHC) class I proteins of the responding mouse. The CTL are induced apparently because peptides noncovalently associated with the isolated hsp molecules can enter the MHC class I antigen processing pathway of professional antigen-presenting cells. Using a recombinant heat shock fusion protein with a large fragment of ovalbumin covalently linked to mycobacterial hsp70, we show here that when the soluble fusion protein was injected without adjuvant into H-2b mice, CTL were produced that recognized an ovalbumin-derived peptide, SIINFEKL, in association with Kb. The peptide is known to arise from natural processing of ovalbumin in H-2b mouse cells, and CTL from the ovalbumin-hsp70-immunized mice and a highly effective CTL clone (4G3) raised against ovalbumin-expressing EL4 tumor cells (EG7-OVA) were equally effective in terms of the concentration of SIINFEKL required for half-maximal lysis in a CTL assay. The mice were also protected against lethal challenge with ovalbumin-expressing melanoma tumor cells. Because large protein fragments or whole proteins serving as fusion partners can be cleaved into short peptides in the MHC class I processing pathway, hsp fusion proteins of the type described here are promising candidates for vaccines aimed at eliciting CD8 CTL in populations of MHC-disparate individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metallothioneins (MT) are involved in the scavenging of the toxic heavy metals and protection of cells from reactive oxygen intermediates. To investigate the potential role of the protein Ku in the expression of MT, we measured the level of MT-I mRNA in the parental rat fibroblast cell line (Rat 1) and the cell lines that stably and constitutively overexpress the small subunit, the large subunit, and the heterodimer of Ku. Treatment with CdS04 or ZnS04 elevated the MT-I mRNA level 20- to 30-fold in the parental cells and the cells (Ku-70) that overproduce the small subunit or those (Ku-7080) overexpressing the heterodimer. By contrast, the cells (Ku-80) overexpressing the large subunit of Ku failed to induce MT-I. In vitro transcription assay showed that the MT-I promoter activity was suppressed selectively in the nuclear extracts from Ku-80 cells. The specificity of the repressor function was shown by the induction of hsp 70, another Cd-inducible gene, in Ku-80 cells. Addition of the nuclear extract from Ku-80 cells at the start of the transcription reaction abolished the MT-l promoter activity in the Rat 1 cell extract. The transcript once formed in Rat 1 nuclear extract was not degraded by further incubation with the extract from Ku-80 cells. The repressor was sensitive to heat. The DNA-binding activities of at least four transcription factors that control the MT-I promoter activity were not affected in Ku-80 cells. These observations have set the stage for further exploration of the mechanisms by which the Ku subunit mediates suppression of MT induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T helper 1 cells play a major role in protective immunity against mycobacterial pathogens. Since the antigen (Ag) specificity of CD4+ human T cells is strongly controlled by HLA class II polymorphism, the immunogenic potential of candidate Ags needs to be defined in the context of HLA polymorphism. We have taken advantage of class II-deficient (Ab0) mice, transgenic for either HLA-DRA/B1*0301 (DR3) or HLA-DQB1*0302/DQA*0301 (DQ8) alleles. In these animals, all CD4+ T cells are restricted by the HLA molecule. We reported previously that human DR3-restricted T cells frequently recognize heat shock protein (hsp)65 of Mycobacterium tuberculosis, and only a single hsp65 epitope, p1–20. DR3.Ab0 mice, immunized with bacillus Calmette–Guérin or hsp65, developed T cell responses to M. tuberculosis, and recognized the same hsp65 epitope, p1–20. Hsp65-immunized DQ8.Ab0 mice mounted a strong response to bacillus Calmette–Guérin but not to p1–20. Instead, we identified three new DQ8-restricted T cell epitopes in the regions 171–200, 311–340, and 411–440. DR3.Ab0 mice immunized with a second major M. tuberculosis protein, Ag85 (composed of 85A, 85B, and 85C), also developed T cell responses against only one determinant, 85B p51–70, that was identified in this study. Importantly, subsequent analysis of human T cell responses revealed that HLA-DR3+, Ag85-reactive individuals recognize exactly the same peptide epitope as DR3.Ab0 mice. Strikingly, both DR3-restricted T cell epitopes represent the best DR3-binding sequences in hsp65 and 85B, revealing a strong association between peptide-immunodominance and HLA binding affinity. Immunization of DR3.Ab0 with the immunodominant peptides p1–20 and p51–70 induced T cell reactivity to M. tuberculosis. Thus, for two different Ags, T cells from DR3.Ab0 mice and HLA-DR3+ humans recognize the same immunodominant determinants. Our data support the use of HLA-transgenic mice in identifying human T cell determinants for the design of new vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hypoxic/anoxic microenvironment has been proposed to exist within a vascular lesion due to intimal or medial cell proliferation in vascular diseases. Here, we examined whether hypoxia alters macrophage function by exposing murine macrophage-like RAW 264.7 (RAW) cells to hypoxia (2% O2). When cells were exposed to hypoxia, a significant number of RAW cells underwent apoptosis. Additionally, small subpopulations of RAW cells were resistant to hypoxia-induced apoptosis. Through repeated cycles of hypoxia exposure, hypoxia-induced apoptosis-resistant macrophages (HARMs) were selected; HARM cells demonstrate >70% resistance to hypoxia-induced apoptosis, as compared with the parental RAW cells. When heat shock protein (HSP) expression was examined after hypoxia, we observed a significant decrease in constitutive heat shock protein 70 (HSC 70) in RAW cells, but not in HARMs, as compared with the control normoxic condition (21% O2). In contrast, the expression level of glucose-regulated protein 78 (GRP 78) in RAW and HARM cells after hypoxia treatment was not altered, suggesting that HSC 70 and not GRP 78 may play a role in protection against hypoxia-induced apoptosis. When tumor necrosis factor α (TNF-α) production was examined after hypoxic treatment, a significant increase in TNF-α production in HARM but decrease in RAW was observed, as compared with cells cultured in normoxic conditions. HARM cells also exhibit a much lower level of modified-LDL uptake than do RAW cells, suggesting that HARMs may not transform into foam cells. These results suggest that a selective population of macrophages may adapt to potentially pathological hypoxic conditions by overcoming the apoptotic signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously reported that short exposure of tomato (Lycopersicon esculentum L.) fruits to high temperature protects them from chilling injury. To study the involvement of heat-shock proteins (HSPs) in the acquisition of low-temperature tolerance, we cloned two heat-shock-induced genes that are also expressed at low temperatures. The cloned cDNAs belong to the small HSP group. Sequence analyses of the clones showed perfect homology to the tomato-ripening gene tom66 and to the tomato chloroplastic HSP21 gene tom111. The expression of both genes was induced by high temperature in fruits, flowers, leaves, and stems, but not by low or ambient temperatures or by other stresses such as drought and anaerobic conditions. When the heated fruits were transferred to low temperature, tom66 and tom111 mRNA levels first decreased but were then reinduced. Induction was not observed in nonheated fruits at low temperature. Immunodetection of tom111-encoded protein indicated that this protein is present at low temperatures in the heated fruits. The results of this study show that the expression of tom66 and tom111 is correlated with protection against some, but not all, symptoms of chilling injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence suggests that the small chloroplast heat-shock protein (Hsp) is involved in plant thermotolerance but its site of action is unknown. Functional disruption of this Hsp using anti-Hsp antibodies or addition of purified Hsp to chloroplasts indicated that (a) this Hsp protects thermolabile photosystem II and, consequently, whole-chain electron transport during heat stress; and (b) this Hsp completely accounted for heat acclimation of electron transport in pre-heat-stressed plants. Therefore, this Hsp is a major adaptation to acute heat stress in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat shock (HS) proteins (HSPs) induce protection against a number of stresses distinct from HS, including reactive oxygen species. In the human premonocytic line U937, we investigated in whole cells the effects of preexposure to HS and exposure to hydrogen peroxide (H2O2) on mitochondrial membrane potential, mass, and ultrastructure. HS prevented H2O2-induced alterations in mitochondrial membrane potential and cristae formation while increasing expression of HSPs and the protein product of bcl-2. Protection correlated best with the expression of the 70-kDa HSP, hsp70. We propose that mitochondria represent a selective target for HS-mediated protection against oxidative injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In all organisms, mild heat pretreatments induce tolerance to high temperatures. In the yeast Saccharomyces cerevisiae, such pretreatments strongly induce heat-shock protein (Hsp) 104, and hsp104 mutations greatly reduce high-temperature survival, indicating Hsp1O4 plays a critical role in induced thermotolerance. Surprisingly, however, a heat-shock transcription factor mutation (hsf1-m3) that blocks the induction of Hsps does not block induced thermotolerance. To resolve these apparent contradictions, we reexamined Hsp expression in hsf1-m3 cells. HsplO4 was expressed at a higher basal level in this strain than in other S. cerevisiae strains. Moreover, whereas the hsf1-m3 mutation completely blocked the induction of Hsp26 by heat, it did not block the induction of Hsp1O4. HSP104 could not be deleted in hsf1-m3 cells because the expression of heat-shock factor (and the viability of the strain) requires nonsense suppression mediated by the yeast prion [PSI+], which in turn depends upon Hsp1O4. To determine whether the level of Hsp1O4 expressed in hsf1-m3 cells is sufficient for thermotolerance, we used heterologous promoters to regulate Hsp1O4 expression in other strains. In the presence of other inducible factors (with a conditioning pretreatment), low levels of Hsp1O4 are sufficient to provide full thermotolerance. More remarkably, in the absence of other inducible factors (without a pretreatment), high levels of Hsp1O4 are sufficient. We conclude that Hsp1O4 plays a central role in ameliorating heat toxicity. Because Hsp1O4 is nontoxic and highly conserved, manipulating the expression of Hsp1OO proteins provides an excellent prospect for manipulating thermotolerance in other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here that the general ectopic expression of a tryptophan/guanine transmembrane transporter gene, white (w), induces male-male courtship in Drosophila. Activation of a hsp-70/miniwhite (mini-w) transgene in mature males results in a marked change in their sexual behavior such that they begin to vigorously court other mature males. In transformant populations containing equal numbers of both sexes, most males participate, thus forming male-male courtship chains, circles, and lariats. Mutations that ablate the w transgene function also abolish this inducible behavior. Female sexual behavior does not appear to be altered by ectopic w expression. By contrast, when exposed to an active homosexual courtship environment, non-transformant males alter their behavior and actively participate in the male-male chaining. These findings demonstrate that, in Drosophila, both genetic and environmental factors play a role in male sexual behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As previously observed for FK506, we report here that cyclosporin A (CsA) treatment of mouse fibroblast cells stably transfected with the mouse mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter plasmid (LMCAT cells) results in potentiation of dexamethasone (Dex)-induced CAT gene expression. Potentiation by CsA is observed in cells treated with 10-100 nM Dex but not in cells treated with 1 microM Dex, a concentration of hormone which results in maximum CAT activity. At 10 nM Dex, 1-5 microM CsA provokes an approximately 50-fold increase in CAT gene transcription, compared with transcription induced by Dex alone. No induction of CAT gene expression is observed in cells treated with CsA or FK506 in the absence of Dex. The antisteroid RU 486 abolishes effects obtained in the presence of Dex. Using a series of CsA, as well as FK506, analogs, including some devoid of calcineurin phosphatase inhibition activity, we conclude that the potentiation effects of these drugs on Dex-induced CAT gene expression in LMCAT cells do not occur through a calcineurin-mediated pathway. Western-blotting experiments following immunoprecipitation of glucocorticosteroid receptor (GR) complexes resulted in coprecipitation of GR, heat shock protein hsp90 and two immunophilins: the FK506-binding protein FKBP59 and the CsA-binding protein cyclophilin 40 (CYP40). Two separate immunophilin-hsp90 complexes are present in LMCAT cells: one containing CYP40-hsp90, the other FKBP59-hsp90. Thus, both FKBP59 and CYP40 can be classified as hsp-binding immunophilins, and their possible involvement as targets of immunosuppressants potentiating the GR-mediated transcriptional activity is discussed.