99 resultados para HLA-DQB1
em National Center for Biotechnology Information - NCBI
Resumo:
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease seen primarily in elderly persons. It is characterized clinically by the development of tense bullae and by the presence of an antibasement membrane antibody. In BP, the antigens involved in the autoimmunity are epidermal basement membrane peptides BPAg1 and BPAg2. We have compared high resolution typing of major histocompatibility complex class II loci (HLA-DRB1, DQB1) in 21 patients with BP, 17 with ocular cicatricial pemphigoid (OCP), and 22 with oral pemphigoid (OP) to a panel of 218 haplotypes of normal individuals. We found that the three diseases (BP, OCP, and OP) have significant association with DQB1*0301 (P = 0.005, P < 0.0001, and P = 0.001, respectively). The frequencies of alleles DQB1*0302, 0303, and 06, which share a specific amino acid sequence from position 71 to 77 (Thr-Arg-Ala-Glu-Leu-Val-Thr) were also increased (P = 0.01). We suggest that an identical major histocompatibility complex class II allele (DQB1*0301) is a common marker for enhanced susceptibility and that the same amino acid residues in positions 71-77 (DQB1*0301, -0302, -0305, -0602, -0603 alleles) are found in patients with BP, OCP and OP. Our findings propose that the autoimmune response in the three different clinical variants of pemphigoid, involves the recognition by T cells of a class II region of DQB1, bound to a peptide from the basement membrane of conjunctiva, oral mucosa, and skin.
Resumo:
Recent studies have demonstrated the importance of recipient HLA-DRB1 allele disparity in the development of acute graft-versus-host disease (GVHD) after unrelated donor marrow transplantation. The role of HLA-DQB1 allele disparity in this clinical setting is unknown. To elucidate the biological importance of HLA-DQB1, we conducted a retrospective analysis of 449 HLA-A, -B, and -DR serologically matched unrelated donor transplants. Molecular typing of HLA-DRB1 and HLA-DQB1 alleles revealed 335 DRB1 and DQB1 matched pairs; 41 DRB1 matched and DQB1 mismatched pairs; 48 DRB1 mismatched and DQB1 matched pairs; and 25 DRB1 and DQB1 mismatched pairs. The conditional probabilities of grades III-IV acute GVHD were 0.42, 0.61, 0.55, and 0.71, respectively. The relative risk of acute GVHD associated with a single locus HLA-DQB1 mismatch was 1.8 (1.1, 2.7; P = 0.01), and the risk associated with any HLA-DQB1 and/or HLA-DRB1 mismatch was 1.6 (1.2, 2.2; P = 0.003). These results provide evidence that HLA-DQ is a transplant antigen and suggest that evaluation of both HLA-DQB1 and HLA-DRB1 is necessary in selecting potential donors.
Resumo:
T helper 1 cells play a major role in protective immunity against mycobacterial pathogens. Since the antigen (Ag) specificity of CD4+ human T cells is strongly controlled by HLA class II polymorphism, the immunogenic potential of candidate Ags needs to be defined in the context of HLA polymorphism. We have taken advantage of class II-deficient (Ab0) mice, transgenic for either HLA-DRA/B1*0301 (DR3) or HLA-DQB1*0302/DQA*0301 (DQ8) alleles. In these animals, all CD4+ T cells are restricted by the HLA molecule. We reported previously that human DR3-restricted T cells frequently recognize heat shock protein (hsp)65 of Mycobacterium tuberculosis, and only a single hsp65 epitope, p1–20. DR3.Ab0 mice, immunized with bacillus Calmette–Guérin or hsp65, developed T cell responses to M. tuberculosis, and recognized the same hsp65 epitope, p1–20. Hsp65-immunized DQ8.Ab0 mice mounted a strong response to bacillus Calmette–Guérin but not to p1–20. Instead, we identified three new DQ8-restricted T cell epitopes in the regions 171–200, 311–340, and 411–440. DR3.Ab0 mice immunized with a second major M. tuberculosis protein, Ag85 (composed of 85A, 85B, and 85C), also developed T cell responses against only one determinant, 85B p51–70, that was identified in this study. Importantly, subsequent analysis of human T cell responses revealed that HLA-DR3+, Ag85-reactive individuals recognize exactly the same peptide epitope as DR3.Ab0 mice. Strikingly, both DR3-restricted T cell epitopes represent the best DR3-binding sequences in hsp65 and 85B, revealing a strong association between peptide-immunodominance and HLA binding affinity. Immunization of DR3.Ab0 with the immunodominant peptides p1–20 and p51–70 induced T cell reactivity to M. tuberculosis. Thus, for two different Ags, T cells from DR3.Ab0 mice and HLA-DR3+ humans recognize the same immunodominant determinants. Our data support the use of HLA-transgenic mice in identifying human T cell determinants for the design of new vaccines.
Resumo:
The understanding of the mutational mechanism that generates high levels of variation at microsatellite loci lags far behind the application of these genetic markers. A phylogenetic approach was developed to study the pattern and rate of mutations at a dinucleotide microsatellite locus tightly linked to HLA-DQB1 (DQCAR). A random Japanese population (n = 129) and a collection of multiethnic samples (n = 941) were typed at the DQB1 and DQCAR loci. The phylogeny of DQB1 alleles was then reconstructed and DQCAR alleles were superimposed onto the phylogeny. This approach allowed us to group DQCAR alleles that share a common ancestor. The results indicated that the DQCAR mutation rate varies drastically among alleles within this single microsatellite locus. Some DQCAR alleles never mutated during a long period of evolutionary time. Sequencing of representative DQCAR alleles showed that these alleles lost their ability to mutate because of nucleotide substitutions that shorten the length of uninterrupted CA repeat arrays; in contrast, all mutating alleles had relatively longer perfect CA repeat sequences.
Resumo:
Whole genome linkage analysis of type 1 diabetes using affected sib pair families and semi-automated genotyping and data capture procedures has shown how type 1 diabetes is inherited. A major proportion of clustering of the disease in families can be accounted for by sharing of alleles at susceptibility loci in the major histocompatibility complex on chromosome 6 (IDDM1) and at a minimum of 11 other loci on nine chromosomes. Primary etiological components of IDDM1, the HLA-DQB1 and -DRB1 class II immune response genes, and of IDDM2, the minisatellite repeat sequence in the 5' regulatory region of the insulin gene on chromosome 11p15, have been identified. Identification of the other loci will involve linkage disequilibrium mapping and sequencing of candidate genes in regions of linkage.
Resumo:
The major histocompatibility complex class II genes play an important role in the genetic predisposition to many autoimmune diseases. In the case of rheumatoid arthritis (RA), the human leukocyte antigen (HLA)-DRB1 locus has been implicated in the disease predisposition. The "shared epitope" hypothesis predicts that similar motifs within the third hypervariable (HV3) regions of some HLA-DRB1 alleles are responsible for the class II-associated predisposition to RA. Using a line of transgenic mice expressing the DQB1*0302/DQA1*0301 (DQ8) genes in the absence of endogenous mouse class II molecules, we have analyzed the antigenicity of peptides covering the HV3 regions of RA-associated and nonassociated DRB1 molecules. Our results show that a correlation exists between proliferative response to peptides derived from the HV3 regions of DRB1 chains and nonassociation of the corresponding alleles with RA predisposition. While HV3 peptides derived from nonassociated DRB1 molecules are highly immunogenic in DQ8 transgenic mice, all the HV3 peptides derived from RA-associated DRB1 alleles fail to induce a DQ8-restricted T-cell response. These data suggest that the role of the "shared epitope" in RA predisposition may be through the shaping of the T-cell repertoire.
Resumo:
The risk of disease associated with persistent virus infections such as HIV-I, hepatitis B and C, and human T-lymphotropic virus-I (HTLV-I) is strongly determined by the virus load. However, it is not known whether a persistent class I HLA-restricted antiviral cytotoxic T lymphocyte (CTL) response reduces viral load and is therefore beneficial or causes tissue damage and contributes to disease pathogenesis. HTLV-I-associated myelopathy (HAM/TSP) patients have a high virus load compared with asymptomatic HTLV-I carriers. We hypothesized that HLA alleles control HTLV-I provirus load and thus influence susceptibility to HAM/TSP. Here we show that, after infection with HTLV-I, the class I allele HLA-A*02 halves the odds of HAM/TSP (P < 0.0001), preventing 28% of potential cases of HAM/TSP. Furthermore, HLA-A*02+ healthy HTLV-I carriers have a proviral load one-third that (P = 0.014) of HLA-A*02− HTLV-I carriers. An association of HLA-DRB1*0101 with disease susceptibility also was identified, which doubled the odds of HAM/TSP in the absence of the protective effect of HLA-A*02. These data have implications for other persistent virus infections in which virus load is associated with prognosis and imply that an efficient antiviral CTL response can reduce virus load and so prevent disease in persistent virus infections.
Resumo:
Killer cell inhibitory receptors (KIR) protect class I HLAs expressing target cells from natural killer (NK) cell-mediated lysis. To understand the molecular basis of this receptor-ligand recognition, we have crystallized the extracellular ligand-binding domains of KIR2DL2, a member of the Ig superfamily receptors that recognize HLA-Cw1, 3, 7, and 8 allotypes. The structure was determined in two different crystal forms, an orthorhombic P212121 and a trigonal P3221 space group, to resolutions of 3.0 and 2.9 Å, respectively. The overall fold of this structure, like KIR2DL1, exhibits K-type Ig topology with cis-proline residues in both domains that define β-strand switching, which sets KIR apart from the C2-type hematopoietic growth hormone receptor fold. The hinge angle of KIR2DL2 is approximately 80°, 14° larger than that observed in KIR2DL1 despite the existence of conserved hydrophobic residues near the hinge region. There is also a 5° difference in the observed hinge angles in two crystal forms of 2DL2, suggesting that the interdomain hinge angle is not fixed. The putative ligand-binding site is formed by residues from several variable loops with charge distribution apparently complementary to that of HLA-C. The packing of the receptors in the orthorhombic crystal form offers an intriguing model for receptor aggregation on the cell surface.
Resumo:
Considering the well established role of nonclassical HLA-G class I molecules in inhibiting natural killer (NK) cell function, the consequence of abnormal HLA-G expression in malignant cells should be the escape of tumors from immunosurveillance. To examine this hypothesis, we analyzed HLA-G expression and NK sensitivity in human malignant melanoma cells. Our analysis of three melanoma cell lines and ex vivo biopsy demonstrated that (i) IGR and M74 human melanoma cell lines exhibit a high level of HLA-G transcription with differential HLA-G isoform transcription and protein expression patterns, (ii) a higher level of HLA-G transcription ex vivo is detected in a skin melanoma metastasis biopsy compared with a healthy skin fragment from the same individual, and (iii) HLA-G protein isoforms other than membrane-bound HLA-G1 protect IGR from NK lysis. It thus appears of critical importance to consider the specific role of HLA-G expression in tumors in the design of future cancer immunotherapies.
Resumo:
Rheumatoid arthritis (RA) is an autoimmune disease associated with the HLA-DR4 and DR1 alleles. The target autoantigen(s) in RA is unknown, but type II collagen (CII) is a candidate, and the DR4- and DR1-restricted immunodominant T cell epitope in this protein corresponds to amino acids 261–273 (CII 261–273). We have defined MHC and T cell receptor contacts in CII 261–273 and provide strong evidence that this peptide corresponds to the peptide binding specificity previously found for RA-associated DR molecules. Moreover, we demonstrate that HLA-DR4 and human CD4 transgenic mice homozygous for the I-Abβ0 mutation are highly susceptible to collagen-induced arthritis and describe the clinical course and histopathological changes in the affected joints.
Resumo:
Copolymer 1 [poly(Y,E,A,K)] is a random synthetic amino acid copolymer of l-tyrosine, l-glutamic acid, l-alanine, and l-lysine that is effective both in suppression of experimental allergic encephalomyelitis and in the treatment of relapsing forms of multiple sclerosis. Copolymer 1 binds promiscuously and very efficiently to purified HLA-DR molecules within the peptide-binding groove. In the present study, YEAK and YEAK-related copolymers and type II collagen (CII) peptide 261–273, a candidate autoantigen in rheumatoid arthritis (RA), competed for binding to RA-associated HLA-DR molecules encoded by DRB1*0101 and DRB1*0401. Moreover, these copolymers (particularly YEAK, YAK, and YEK) inhibited the response of DR1- and DR4-restricted T cell clones to the CII epitope 261–273 by >50%. This direct evidence both for competitive interactions of these copolymers and CII peptide with RA-associated HLA-DR molecules and for inhibition of CII-specific T cell responses suggests that these compounds should be evaluated in animal models for rheumatoid arthritis.
Resumo:
The release of cytotoxic granule contents by cytotoxic T lymphocytes triggers apoptotic target cell death. Cytotoxic granules contain a pore-forming protein, perforin, and a group of serine proteases called granzymes. We expressed human granzyme A in bacteria as a proenzyme capable of in vitro activation by enterokinase. The recombinant activated enzyme has catalytic activity against substrates with Arg, preferably, or Lys at the P1 position, comparable to trypsin. An enzymatically inactive recombinant granzyme A, with the active site Ser mutated to Ala, was produced and used with affinity chromatography to identify potential substrates. Two granzyme A-binding cytoplasmic proteins of molecular mass 33 and 44 kDa were isolated and identified by tryptic fragment sequencing as PHAP I and II, ubiquitous putative HLA-associated proteins, previously coisolated by binding to an HLA class II peptide. PHAP II forms an SDS-stable complex with recombinant mutant granzyme A and coprecipitates with it from cytoplasmic extracts. PHAP II, either purified or in cell lysates, is cleaved by the recombinant enzyme at nanomolar concentrations to a 25-kDa fragment. PHAP II begins to be degraded within minutes of initiation of cytotoxic T lymphocyte attack. PHAP I and II are candidate participants in the granzyme A pathway of cell-mediated cytotoxicity.
Resumo:
An HLA allele-specific cytotoxic T lymphocyte response is thought to influence the rate of disease progression in HIV-1-infected individuals. In a prior study of 139 HIV-1-infected homosexual men, we identified HLA class I alleles and observed an association of specific alleles with different relative hazards for progression to AIDS. Seeking an explanation for this association, we searched HIV-1 protein sequences to determine the number of peptides matching motifs defined by combinations of specific amino acids reported to bind 16 class I alleles. Analyzing complete sequences of 12 clade B HIV isolates, we determined the number of allele motifs that were conserved (occurring in all 12 isolates) and nonconserved (occurring in only one isolate), as well as the average number of allele motifs per isolate. We found significant correlations with an allele’s association with disease progression for counts of conserved motifs in gag (R = 0.73; P = 0.002), pol (R = 0.58, P = 0.024), gp120 (R = 0.78, P = 0.00056), and total viral protein sequences (R = 0.67, P = 0.0058) and also for counts of nonconserved motifs in gag (R = 0.62, P = 0.013), pol (R = 0.74, P = 0.0017), gp41 (R = 0.52, P = 0.046), and total viral protein (R = 0.71, P = 0.0033). We also found significant correlations for the average number of motifs per isolate for gag, pol, gp120, and total viral protein. This study provides a plausible functional explanation for the observed association of different HLA alleles with variable rates of disease progression.
Resumo:
Human T lymphocytes have been shown to express inhibitory natural killer cell receptors (NKR), which can down-regulate T cell antigen receptor-mediated T cell function, including cytolytic activity. In the present study, we demonstrate that CD3+NKR+ cells can be identified in HIV-infected patients. HIV-specific cytolytic activity was analyzed in five patients in whom autologous lymphoblastoid B cell lines could be derived as a source of autologous target cells. Phytohemagglutinin-activated T cell populations that had been cultured in interleukin 2 displayed HIV-specific cytotoxic T lymphocyte (CTL) activity against HIV env, gag, pol, and nef in 3 of 5 patients. Addition of anti-NKR mAb of IgM isotype could increase the specific CTL activity. Moreover, in one additional patient, HIV-specific CTL activity was undetectable; however, after addition of anti-NKR mAb such CTL activity appeared de novo. Similar results were obtained by analysis of CD3+NKR+ clones derived from two patients. These data provide direct evidence that CD3+NKR+ cells may include antigen (HIV)-specific CTLs and that mAb-mediated masking of inhibitory NKR may revert the down-regulation of CTL function.
Resumo:
HLA-G is a nonclassical major histocompatibility complex class I molecule selectively expressed on cytotrophoblasts at the feto–maternal interface, where it may play an important role in maternal tolerance of the fetus. We provide direct evidence under physiological conditions that supports the role of HLA-G in protecting cytotrophoblasts against natural killer (NK) cytolysis in 6 semiallogenic combinations of maternal uterine NK cells and their own trophoblast counterparts, as well as in 20 allogenic combinations of maternal uterine NK cells and trophoblasts from different mothers. We show that, in all cases studied, this HLA-G-mediated protection was abolished by treatment of cytotrophoblasts with an HLA-G-specific mAb. The HLA class I-negative K562 cell line transfected with the predominant HLA-G1 isoform results in similar protection and abolition from maternal uterine NK lysis. Because maternal uterine NK cells express killer inhibitory receptors for HLA-G, we conclude that their interactions contribute to the survival of the fetal semiallograft by confering immunological tolerance to its tissues.