125 resultados para HELICES

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alanine-based peptides of defined sequence and length show measurable helix contents, allowing them to be used as a model system both for analyzing the mechanism of helix formation and for investigating the contributions of side-chain interactions to protein stability. Extensive characterization of many peptide sequences with varying amino acid contents indicates that the favorable helicity of alanine-based peptides can be attributed to the large helix-stabilizing propensity of alanine. Based on their analysis of alanine-rich sequences N-terminally linked to a synthetic helix-inducing template, Kemp and coworkers [Kemp, D. S., Boyd, J. G. & Muendel, C. C. (1991) Nature (London) 352, 451–454; Kemp, D. S., Oslick, S. L. & Allen, T. J. (1996) J. Am. Chem. Soc. 118, 4249–4255] argue that alanine is helix-indifferent, however, and that the favorable helix contents of alanine-based peptides must have some other explanation. Here, we show that the helix contents of template-nucleated sequences are influenced strongly by properties of the template–helix junction. A model in which the helix propensities of residues at the template–peptide junction are treated separately brings the results from alanine-based peptides and template-nucleated helices into agreement. The resulting model provides a physically plausible resolution of the discrepancies between the two systems and allows the helix contents of both template-nucleated and standard peptide helices to be predicted by using a single set of helix propensities. Helix formation in both standard peptides and template–peptide conjugates can be attributed to the large intrinsic helix-forming tendency of alanine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to elucidate the mechanism of membrane insertion and the structural organization of pores formed by Bacillus thuringiensis δ-endotoxin. We determined the relative affinities for membranes of peptides corresponding to the seven helices that compose the toxin pore-forming domain, their modes of membrane interaction, their structures within membranes, and their orientations relative to the membrane normal. In addition, we used resonance energy transfer measurements of all possible combinatorial pairs of membrane-bound helices to map the network of interactions between helices in their membrane-bound state. The interaction of the helices with the bilayer membrane was also probed by a Monte Carlo simulation protocol to determine lowest-energy orientations. Our results are consistent with a situation in which helices α4 and α5 insert into the membrane as a helical hairpin in an antiparallel manner, while the other helices lie on the membrane surface like the ribs of an umbrella (the “umbrella model”). Our results also support the suggestion that α7 may serve as a binding sensor to initiate the structural rearrangement of the pore-forming domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study of the retinitis pigmentosa mutation L125R and two designed mutations at this site, L125A and L125F, showed that these mutations cause partial or total misfolding of the opsins expressed in COS cells from the corresponding mutant opsin genes. We now report on expression and characterization of the opsins from the following retinitis pigmentosa mutants in the transmembrane domain of rhodopsin that correspond to six of the seven helices: G51A and G51V (helix A), G89D (helix B), A164V (helix D), H211P (helix E), P267L and P267R (helix F), and T297R (helix G). All the mutations caused partial misfolding of the opsins as observed by the UV/visible absorption characteristics and by separation of the expressed opsins into fractions that bound 11-cis-retinal to form the corresponding mutant rhodopsins and those that did not bind 11-cis-retinal. Further, all the mutant rhodopsins prepared from the above mutants, except for G51A, showed strikingly abnormal bleaching behavior with abnormal metarhodopsin II photointermediates. The results show that retinitis pigmentosa mutations in every one of the transmembrane helices can cause misfolding of the opsin. Therefore, on the basis of these and previous results, we conclude that defects in the packing of the transmembrane helices resulting from these mutations are relayed to the intradiscal domain, where they cause misfolding of the opsin by inducing the formation of a disulfide bond other than the native Cys-110—Cys-187 disulfide bond. Thus, there is coupling between packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydration forces are thought to result from the energetic cost of water rearrangement near macromolecular surfaces. Raman spectra, collected on the same collagen samples on which these forces were measured, reveal a continuous change in water hydrogen-bonding structure as a function of separation between collagen triple helices. The varying spectral parameters track the force-distance curve. The energetic cost of water “restructuring,” estimated from the spectra, is consistent with the measured energy of intermolecular interaction. These correlations support the idea that the change in water structure underlies the exponentially varying forces seen in this system at least over the 13–18-Å range of interaxial separations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HIV-1 entry into CD4+ cells requires the sequential interactions of the viral envelope glycoproteins with CD4 and a coreceptor such as the chemokine receptors CCR5 and CXCR4. A plausible approach to blocking this process is to use small molecule antagonists of coreceptor function. One such inhibitor has been described for CCR5: the TAK-779 molecule. To facilitate the further development of entry inhibitors as antiviral drugs, we have explored how TAK-779 acts to prevent HIV-1 infection, and we have mapped its site of interaction with CCR5. We find that TAK-779 inhibits HIV-1 replication at the membrane fusion stage by blocking the interaction of the viral surface glycoprotein gp120 with CCR5. We could identify no amino acid substitutions within the extracellular domain of CCR5 that affected the antiviral action of TAK-779. However, alanine scanning mutagenesis of the transmembrane domains revealed that the binding site for TAK-779 on CCR5 is located near the extracellular surface of the receptor, within a cavity formed between transmembrane helices 1, 2, 3, and 7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was previously shown that coexpression of the lactose permease of Escherichia coli in two contiguous fragments leads to functional complementation. We demonstrate here that site-directed thiol crosslinking of coexpressed permease fragments can be used to determine helix proximity in situ without the necessity of purifying the permease. After coexpression of the six N-terminal (N6) and six C-terminal (C6) transmembrane helices, each with a single Cys residue, crosslinking was carried out in native membranes and assessed by the mobility of anti-C-terminal-reactive polypeptides on immunoblots. A Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 28 or 29 (helix I), but not with a Cys residue at position 27, which is on the opposite face of helix I, thereby indicating that the face of helix I containing Pro-28 and Phe-29 is close to helix VII. Similarly, a Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 52 or 53 (helix II), but not with a Cys residue at position 54. Furthermore, low-efficiency crosslinking is observed between a Cys residue at position 52 or 53 and a Cys residue at position 361 (helix XI). The results indicate that helix VII lies in close proximity to both helices I and II and that helix II is also close to helix XI. The method should be applicable to a number of different polytopic membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many polar residues are directly involved in transmembrane protein functions, the extent to which they contribute to more general structural features is still unclear. Previous studies have demonstrated that asparagine residues can drive transmembrane helix association through interhelical hydrogen bonding [Choma, C., Gratkowski, H., Lear, J. D. & DeGrado, W. F. (2000) Nat. Struct. Biol. 7, 161–166; and Zhou, F. X., Cocco, M. J., Russ, W. P., Brunger, A. T. & Engelman, D. M. (2000) Nat. Struct. Biol. 7, 154–160]. We have studied the ability of other polar residues to promote helix association in detergent micelles and in biological membranes. Our results show that polyleucine sequences with Asn, Asp, Gln, Glu, and His, residues capable of being simultaneously hydrogen bond donors and acceptors, form homo- or heterooligomers. In contrast, polyleucine sequences with Ser, Thr, and Tyr do not associate more than the polyleucine sequence alone. The results therefore provide experimental evidence that interactions between polar residues in the helices of transmembrane proteins may serve to provide structural stability and oligomerization specificity. Furthermore, such interactions can allow structural flexibility required for the function of some membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined structural and biochemical studies on Lac repressor bound to operator DNA have demonstrated the central role of the hinge helices in operator bending and the induction mechanism. We have constructed a covalently linked dimeric Lac-headpiece that binds DNA with four orders of magnitude higher affinity as compared with the monomeric form. This enabled a detailed biochemical and structural study of Lac binding to its cognate wild-type and selected DNA operators. The results indicate a profound contribution of hinge helices to the stability of the protein–DNA complex and highlight their central role in operator recognition. Furthermore, protein–DNA interactions in the minor groove appear to modulate hinge helix stability, thus accounting for affinity differences and protein-induced DNA bending among the various operator sites. Interestingly, the in vitro DNA-binding affinity of the reported dimeric Lac construct can de readily modulated by simple adjustment of redox conditions, thus rendering it a potential artificial gene regulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site-directed chemical cleavage of lactose permease indicates that helix V is in close proximity to helices VII and VIII. To test this conclusion further, permease containing a biotin-acceptor domain and paired Cys residues at positions 148 (helix V) and 228 (helix VII), 148 and 226 (helix VII), or 148 and 275 (helix VIII) was affinity purified and labeled with a sulfhydryl-specific nitroxide spin label. Spin-spin interactions are observed with the 148/228 and 148/275 pairs, indicating close proximity between appropriate faces of helix V and helices VII and VIII. Little or no interaction is evident with the 148/226 pair, in all likelihood because position 226 is on the opposite face of helix VII from position 228. Broadening of the electron paramagnetic resonance spectra in the frozen state was used to estimate distance between the 148/228 and the 148/275 pairs. The nitroxides at positions 148 and 228 or 148 and 275 are within approximately 13-15 A. Finally, Cys residues at positions 148 and 228 are crosslinked by dibromobimane, a bifunctional crosslinker that is approximately 5 A. long, while no crosslinking is detected between Cys residues at positions 148 and 275 or 148 and 226. The results provide strong support for a structure in which helix V is in close proximity to both helices VII and VIII and is oriented in such a fashion that Cys-148 is closer to helix VII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures of Watson-Crick base paired 15-nucleobase oligomer strands in A-type or B-type conformation in which one strand [a strand of alternating nucleotide and riboacetal thymidine nucleoside (RT) units, RP] is DNA and the other is composed of alternating nucleotides and riboacetal nucleosides have been studied by molecular mechanics. Analogously, oligomer strands of RNA in place of DNA have been modeled. The calculations indicate that the RP strand is more stable when complexed in an A-type duplex relative to a B-type form and that this conformational preference is presumably due to the more uniform nature of the former. Nearly planar ribose rings were more commonly observed in the minimized structures of the B-type DNA.RP duplexes as compared with A-type duplexes, despite the fact that planar ribofuranose rings are known to be energetically unfavorable in oligonucleotides. Computed relative stabilities of all duplexes containing the RP strand suggest that such heteroduplexes are less stable than the corresponding double-stranded DNA and double-stranded RNA species. These findings are in agreement with experimental results which show, when equivalent sequences were compared, that a DNA.RNA control forms a more stable duplex than RP hound to a complementary single-stranded RNA strand. In contrast, molecular mechanics studies of complementary triple-helical (DNA)2.RP, (DNA)2.DNA, and (DNA)2.RNA structures indicate that the binding of RP as a Hoogsteen strand stabilizes the underlying duplex to a greater extent compared with native oligonucleotides. These calculations suggest that puckering of the ribose ring in the riboacetal linkage leads to a more favorable interaction with a complementary nucleic acid target than the proposed planar geometry and that this puckering may account for the enhanced binding of RP to a double-stranded target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The helicity in water has been determined for several series of alanine-rich peptides that contain single lysine residues and that are N-terminally linked to a helix-inducing and reporting template termed Ac-Hel1. The helix-propagating constant for alanine (sAla value) that best fits the properties of these peptides lies in the range of 1.01-1.02, close to the value reported by Scheraga and coworkers [Wojcik, J., Altmann, K.-H. & Scheraga, H.A. (1990) Biopolymers 30, 121-134], but significantly lower than the value assigned by Baldwin and coworkers [Chakrabartty, A., Kortemme, T. & Baldwin, R.L. (1994) Protein Sci. 3,843-852]. From a study of conjugates Ac-Hel1-Ala(n)-Lys-Ala(m)-NH2 and analogs in which the methylene portion of the lysine side chain is truncated, we find that the unusual helical stability of Ala(n)Lys peptides is controlled primarily by interactions of the lysine side chain with the helix barrel, and only passively by the alanine matrix. Using 1H NMR spectroscopy, we observe nuclear Overhauser effect crosspeaks consistent with proton-proton contacts expected for these interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligonucleotide analogs with N3'-->P5' phosphoramidate linkages bind to the major groove of double-helical DNA at specific oligopurine.oligopyrimidine sequences. These triple-helical complexes are much more stable than those formed by oligonucleotides with natural phosphodiester linkages. Oligonucleotide phosphoramidates containing thymine and cytosine or thymine, cytosine, and guanine bind strongly to the polypurine tract of human immunodeficiency virus proviral DNA under physiological conditions. Site-specific cleavage by the Dra I restriction enzyme at the 5' end of the polypurine sequence was inhibited by triplex formation. A eukaryotic transcription assay was used to investigate the effect of oligophosphoramidate binding to the polypurine tract sequence on transcription of the type 1 human immunodeficiency virus nef gene under the control of a cytomegalovirus promoter. An efficient arrest of RNA polymerase II was observed at the specific triplex site at submicromolar concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using precursor tRNA molecules to study RNA-protein interactions, we have identified an RNA motif recognized by eukaryotic RNase P (EC 3.1.26.5). Analysis of circularly permuted precursors indicates that interruptions in the sugar-phosphate backbone are not tolerated in the acceptor stem, in the T stem-loop, or between residues A-9 and G-10. Prokaryotic RNase P will function with a minihelix consisting of the acceptor stem connected directly to the T stem-loop. Eukaryotic RNase P cannot use such a minimal substrate unless a linker sequence is added in the gap where the D stem and anticodon stem-loop were deleted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human p32 (also known as SF2-associated p32, p32/TAP, and gC1qR) is a conserved eukaryotic protein that localizes predominantly in the mitochondrial matrix. It is thought to be involved in mitochondrial oxidative phosphorylation and in nucleus–mitochondrion interactions. We report the crystal structure of p32 determined at 2.25 Å resolution. The structure reveals that p32 adopts a novel fold with seven consecutive antiparallel β-strands flanked by one N-terminal and two C-terminal α-helices. Three monomers form a doughnut-shaped quaternary structure with an unusually asymmetric charge distribution on the surface. The implications of the structure on previously proposed functions of p32 are discussed and new specific functional properties are suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have applied in situ atomic force microscopy to directly observe the aggregation of Alzheimer’s β-amyloid peptide (Aβ) in contact with two model solid surfaces: hydrophilic mica and hydrophobic graphite. The time course of aggregation was followed by continuous imaging of surfaces remaining in contact with 10–500 μM solutions of Aβ in PBS (pH 7.4). Visualization of fragile nanoscale aggregates of Aβ was made possible by the application of a tapping mode of imaging, which minimizes the lateral forces between the probe tip and the sample. The size and the shape of Aβ aggregates, as well as the kinetics of their formation, exhibited pronounced dependence on the physicochemical nature of the surface. On hydrophilic mica, Aβ formed particulate, pseudomicellar aggregates, which at higher Aβ concentration had the tendency to form linear assemblies, reminiscent of protofibrillar species described recently in the literature. In contrast, on hydrophobic graphite Aβ formed uniform, elongated sheets. The dimensions of those sheets were consistent with the dimensions of β-sheets with extended peptide chains perpendicular to the long axis of the aggregate. The sheets of Aβ were oriented along three directions at 120° to each other, resembling the crystallographic symmetry of a graphite surface. Such substrate-templated self-assembly may be the distinguishing feature of β-sheets in comparison with α-helices. These studies show that in situ atomic force microscopy enables direct assessment of amyloid aggregation in physiological fluids and suggest that Aβ fibril formation may be driven by interactions at the interface of aqueous solutions and hydrophobic substrates, as occurs in membranes and lipoprotein particles in vivo.