28 resultados para Guild Merchant of Preston (Association)
em National Center for Biotechnology Information - NCBI
Resumo:
We present a study of the adsorption of two peptides at the octane–water interface. The first peptide, Lac21, exists in mixed monomer–tetramer equilibrium in bulk solution with an appreciable monomer concentration. The second peptide, Lac28, exists as a tetramer in solution, with minimal exposed hydrophobic surface. A kinetic limitation to interfacial adsorption exists for Lac28 at moderate to high surface coverage that is not observed for Lac21. We estimate the potential energy barrier for Lac28 adsorption to be 42 kJ/mol and show that this is comparable to the expected free energy barrier for tetramer dissociation. This finding suggests that, at moderate to high surface coverage, adsorption is kinetically limited by the availability of interfacially active monomeric “domains” in the subinterfacial region. We also show how the commonly used empirical equation for protein adsorption dynamics can be used to estimate the potential energy barrier for adsorption. Such an approach is shown to be consistent with a formal description of diffusion–adsorption, provided a large potential energy barrier exists. This work demonstrates that the dynamics of interfacial adsorption depend on protein thermodynamic stability, and hence structure, in a quantifiable way.
Resumo:
Objective: To examine the relation between different types of alcoholic drinks and upper digestive tract cancers (oropharyngeal and oesophageal).
Resumo:
The influence of temporal association on the representation and recognition of objects was investigated. Observers were shown sequences of novel faces in which the identity of the face changed as the head rotated. As a result, observers showed a tendency to treat the views as if they were of the same person. Additional experiments revealed that this was only true if the training sequences depicted head rotations rather than jumbled views; in other words, the sequence had to be spatially as well as temporally smooth. Results suggest that we are continuously associating views of objects to support later recognition, and that we do so not only on the basis of the physical similarity, but also the correlated appearance in time of the objects.
Resumo:
Allelic association between pairs of loci is derived in terms of the association probability ρ as a function of recombination θ, effective population size N, linear systematic pressure v, and time t, predicting both ρrt, the decrease of association from founders and ρct, the increase by genetic drift, with ρt = ρrt + ρct. These results conform to the Malecot equation, with time replaced by distance on the genetic map, or on the physical map if recombination in the region is uniform. Earlier evidence suggested that ρ is less sensitive to variations in marker allele frequencies than alternative metrics for which there is no probability theory. This robustness is confirmed for six alternatives in eight samples. In none of these 48 tests was the residual variance as small as for ρ. Overall, efficiency was less than 80% for all alternatives, and less than 30% for two of them. Efficiency of alternatives did not increase when information was estimated simultaneously. The swept radius within which substantial values of ρ are conserved lies between 385 and 893 kb, but deviation of parameters between measures is enormously significant. The large effort now being devoted to allelic association has little value unless the ρ metric with the strongest theoretical basis and least sensitivity to marker allele frequencies is used for mapping of marker association and localization of disease loci.
Resumo:
Transcriptional repression is an important component of regulatory networks that govern gene expression. In this report, we have characterized the mechanisms by which the immediate early protein 2 (IE2 or IE86), a master transcriptional regulator of human cytomegalovirus, down-regulates its own expression. In vitro transcription and DNA binding experiments demonstrate that IE2 blocks specifically the association of RNA polymerase II with the preinitiation complex. Although, to our knowledge, this is the first report to describe a eukaryotic transcriptional repressor that selectively impedes RNA polymerase II recruitment, we present data that suggest that this type of repression might be widely used in the control of transcription by RNA polymerase II.
Resumo:
Incubating rat aortic smooth muscle cells with either platelet-derived growth factor BB (PDGF) or insulin-like growth factor I (IGF-I) increased the phosphorylation of PHAS-I, an inhibitor of the mRNA cap binding protein, eukaryotic initiation factor (eIF) 4E. Phosphorylation of PHAS-I promoted dissociation of the PHAS-I-eIF-4E complex, an effect that could partly explain the stimulation of protein synthesis by the two growth factors. Increasing cAMP with forskolin decreased PHAS-I phosphorylation and markedly increased the amount of eIF-4E bound to PHAS-I, effects consistent with an action of cAMP to inhibit protein synthesis. Both PDGF and IGF-I activated p70S6K, but only PDGF increased mitogen-activated protein kinase activity. Forskolin decreased by 50% the effect of PDGF on increasing p70S6K, and forskolin abolished the effect of IGF-I on the kinase. The effects of PDGF and IGF-I on increasing PHAS-I phosphorylation, on dissociating the PHAS-I-eIF-4E complex, and on increasing p70S6K were abolished by rapamycin. The results indicate that IGF-I and PDGF increase PHAS-I phosphorylation in smooth muscle cells by the same rapamycin-sensitive pathway that leads to activation of p70S6K.
Resumo:
The disruption of the BCR gene and its juxtaposition to and consequent activation of the ABL gene has been implicated as the critical molecular defect in Philadelphia chromosome-positive leukemias. The normal BCR protein is a multifunctional molecule with domains that suggest its participation in phosphokinase and GTP-binding pathways. Taken together with its localization to the cytoplasm of uncycled cells, it is therefore presumed to be involved in cytoplasmic signaling. By performing a double aphidicolin block for cell cycle synchronization, we currently demonstrate that the subcellular localization of BCR shifts from being largely cytoplasmic in interphase cells to being predominantly perichromosomal in mitosis. Furthermore, with the use of immunogold labeling and electron microscopy, association of BCR with DNA, in particular heterochromatin, can be demonstrated even in quiescent cells. Results were similar in cell lines of lymphoid or myeloid origin. These observations suggest a role for BCR in the phosphokinase interactions linked to condensed chromatin, a network previously implicated in cell cycle regulation.
Resumo:
Telomerase is a ribonucleoprotein (RNP) particle required for the replication of telomeres. The RNA component, termed hTR, of human telomerase contains a domain structurally and functionally related to box H/ACA small nucleolar RNAs (snoRNAs). Furthermore, hTR is known to be associated with two core components of H/ACA snoRNPs, hGar1p and Dyskerin (the human counterpart of yeast Cbf5p). To assess the functional importance of the association of hTR with H/ACA snoRNP core proteins, we have attempted to express hTR in a genetically tractable system, Saccharomyces cerevisiae. Both mature non-polyadenylated and polyadenylated forms of hTR accumulate in yeast. The former is associated with all yeast H/ACA snoRNP core proteins, unlike TLC1 RNA, the endogenous RNA component of yeast telomerase. We show that the presence of the H/ACA snoRNP proteins Cbf5p, Nhp2p and Nop10p, but not Gar1p, is required for the accumulation of mature non-polyadenylated hTR in yeast, while accumulation of TLC1 RNA is not affected by the absence of any of these proteins. Our results demonstrate that yeast telomerase is unrelated to H/ACA snoRNPs. In addition, they show that the accumulation in yeast of the mature RNA component of human telomerase depends on its association with three of the four core H/ACA snoRNP proteins. It is likely that this is the case in human cells as well.
Resumo:
Traditional mechanisms thought to underlie opioid tolerance include receptor phosphorylation/down-regulation, G-protein uncoupling, and adenylyl cyclase superactivation. A parallel line of investigation also indicates that opioid tolerance development results from a switch from predominantly opioid receptor Giα inhibitory to Gβγ stimulatory signaling. As described previously, this results, in part, from the increased relative abundance of Gβγ-stimulated adenylyl cyclase isoforms as well as from a profound increase in their phosphorylation [Chakrabarti, S., Rivera, M., Yan, S.-Z., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 655–662; Chakrabarti, S., Wang, L., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 949–953]. The present study demonstrates that chronic morphine administration results in the concomitant phosphorylation of three key signaling proteins, G protein receptor kinase (GRK) 2/3, β-arrestin, and Gβ, in the guinea pig longitudinal muscle myenteric plexus tissue. Augmented phosphorylation of all three proteins is evident in immunoprecipitate obtained by using either anti-GRK2/3 or Gβ antibodies, but the phosphorylation increment is greater in immunoprecipitate obtained with Gβ antibodies. Analyses of coimmunoprecipitated proteins indicate that phosphorylation of GRK2/3, β-arrestin, and Gβ has varying consequences on their ability to associate. As a result, increased availability of and signaling via Gβγ could occur without compromising the membrane content (and presumably activity) of GRK2/3. Induction of the concomitant phosphorylation of multiple proteins in a multimolecular complex with attendant modulation of their association represents a novel mechanism for increasing Gβγ signaling and opioid tolerance formation.
Resumo:
Different approaches were utilized to investigate the mechanism by which fusicoccin (FC) induces the activation of the H+-ATPase in plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings treated in vivo with (FC-PM) or without (C-PM) FC. Treatment of FC-PM with different detergents indicated that PM H+-ATPase and the FC-FC-binding-protein (FCBP) complex were solubilized to a similar extent. Fractionation of solubilized FC-PM proteins by a linear sucrose-density gradient showed that the two proteins comigrated and that PM H+-ATPase retained the activated state induced by FC. Solubilized PM proteins were also fractionated by a fast-protein liquid chromatography anion-exchange column. Comparison between C-PM and FC-PM indicated that in vivo treatment of the seedlings with FC caused different elution profiles; PM H+-ATPase from FC-PM was only partially separated from the FC-FCBP complex and eluted at a higher NaCl concentration than did PM H+-ATPase from C-PM. Western analysis of fast-protein liquid chromatography fractions probed with an anti-N terminus PM H+-ATPase antiserum and with an anti-14–3-3 antiserum indicated an FC-induced association of FCBP with the PM H+-ATPase. Analysis of the activation state of PM H+-ATPase in fractions in which the enzyme was partially separated from FCBP suggested that the establishment of an association between the two proteins was necessary to maintain the FC-induced activation of the enzyme.
Resumo:
The HIV-1 envelope glycoprotein gp120 displays inefficient intracellular transport, which is caused by its retention in the endoplasmic reticulum. Coexpression in insect cells (Sf9) of HIV-1 gp120 with calnexin has shown that their interaction was modulated by the signal sequence of HIV-1 gp120. gp120, with its natural signal sequence, showed a prolonged association with calnexin with a t1/2 of greater than 20 min. Replacement of the natural signal sequence with the signal sequence from mellitin led to a decreased time of association of gp120 with calnexin (t1/2 < 10 min). These different times of calnexin association coincided both with the folding of gp120 as measured by the ability of bind CD4 and with endoplasmic reticulum to Golgi transport as analyzed by the acquisition of partial endoglycosidase H resistance. Using a monospecific antibody to the HIV-1 gp120 natural signal peptide, we showed that calnexin associated with N-glycosylated but uncleaved gp120. Only after dissociation from calnexin was gp120 cleaved, but very inefficiently. Only the small proportion of signal-cleaved gp120 molecules acquired transport competence and were secreted. This is the first report demonstrating the effect of the signal sequence on calnexin association.
Resumo:
Eukaryotic homologs of Escherichia coli Rec-A protein have been shown to form nucleoprotein filaments with single-stranded DNA that recognize homologous sequences in duplex DNA. Several recent reports in four widely diverse species have demonstrated the association of RecA homologs with meiotic prophase chromatin. The current immunocytological study on mouse spermatocytes and oocytes shows that a eukaryotic homolog, Rad5l, associates with a subset of chromatin sites as early as premeiotic S phase, hours before either the appearance of precursors of synaptonemal complexes or the initiation of synapsis. When homologous chromosomes do begin to pair, the Rad5l-associated sequences are sites of initial contact between homologues and of localized DNA synthesis. Distribution of Rad5l foci on the chromatin of fully synapsed bivalents at early pachynema corresponds to an R-band pattern of mitotic chromosomes. R-bands are known to be preferred sites of both synaptic initiation and recombination. The time course of appearance of Rad51 association with chromatin, its distribution, and its interaction with other Rad5l-associated sequences suggests that it plays an important role preselection of sequences and synaptic initiation.
Resumo:
We report a serendipitous discovery that extends the impressive catalog of reporter functions performed by green fluorescent protein (GFP) or its derivatives. When two GFP molecules are brought into proximity, changes in the relative intensities of green fluorescence emitted upon excitation at 395 vs. 475 nm result. These spectral changes provide a sensitive ratiometric index of the extent of self-association that can be exploited to quantitatively image homo-oligomerization or clustering processes of GFP-tagged proteins in vivo. The method, which we term proximity imaging (PRIM), complements fluorescence resonance energy transfer between a blue fluorescent protein donor and a GFP acceptor, a powerful method for imaging proximity relationships between different proteins. However, unlike fluorescence resonance energy transfer (which is a spectral interaction), PRIM depends on direct contact between two GFP modules, which can lead to structural perturbations and concomitant spectral changes within a module. Moreover, the precise spatial arrangement of the GFP molecules within a given dimer determines the magnitude and direction of the spectral change. We have used PRIM to detect FK1012-induced dimerization of GFP fused to FK506-binding protein and clustering of glycosylphosphatidylinositol-anchored GFP at cell surfaces.
Resumo:
Protein acylation is an important way in which a number of proteins with a variety of functions are modified. The physiological role of the acylation of cellular proteins is still poorly understood. Covalent binding of fatty acids to nonintegral membrane proteins is thought to produce transient or permanent enhancement of the association of the polypeptide chains with biological membranes. In this paper, we investigate the functional role for the palmitoylation of an atypical membrane-bound protein, yeast protoporphyrinogen oxidase, which is the molecular target of diphenyl ether-type herbicides. Palmitoylation stabilizes an active heat- and protease-resistant conformation of the protein. Palmitoylation of protoporphyrinogen oxidase has been demonstrated to occur in vivo both in yeast cells and in a heterologous bacterial expression system, where it may be inhibited by cerulenin leading to the accumulation of degradation products of the protein. The thiol ester linking palmitoleic acid to the polypeptide chain was shown to be sensitive to hydrolysis by hydroxylamine and also by the widely used serine-protease inhibitor phenylmethylsulfonyl fluoride.
Resumo:
We have reported previously that the hepatitis B virus oncoprotein, HBx, can bind to the C terminus of p53 and inhibit several critical p53-mediated cellular processes, including DNA sequence-specific binding, transcriptional transactivation, and apoptosis. Recognizing the importance of p53-mediated apoptosis for maintaining homeostasis and preventing neoplastic transformation, here we further examine the physical interaction between HBx and p53 as well as the functional consequences of this association. In vitro binding studies indicate that the ayw and adr viral subtypes of HBx bind similar amounts of glutathione S-transferase-p53 with the distal C terminus of HBx (from residues 111 to 154) being critical for this interaction. Using a microinjection technique, we show that this same C-terminal region of HBx is necessary for sequestering p53 in the cytoplasm and abrogating p53-mediated apoptosis. The transcriptional transactivation domain of HBx also maps to its C terminus; however, a comparison of the ability of full-length and truncated HBx protein to abrogate p53-induced apoptosis versus transactivate simian virus 40- or human nitric oxide synthase-2 promoter-driven reporter constructs indicates that these two functional properties are distinct and thus may contribute to hepatocarcinogenesis differently. Collectively, our data indicate that the distal C-terminal domain of HBx, independent of its transactivation activity, complexes with p53 in the cytoplasm, partially preventing its nuclear entry and ability to induce apoptosis. These pathobiological effects of HBx may contribute to the early stages of hepatocellular carcinogenesis.