5 resultados para Guérin-de Tencin
em National Center for Biotechnology Information - NCBI
Resumo:
Bacille Calmette-Guérin (BCG) is a live, attenuated strain of Mycobacterium bovis used widely for tuberculosis prophylaxis and bladder cancer immunotherapy, although it has limitations in both contexts. To investigate whether BCG's immunostimulatory properties could be modified, and to gain insight into the interaction between mycobacteria and their hosts, we constructed recombinant BCG strains that secrete functional murine cytokines and studied their properties in mouse models of experimental infection. Cell-mediated immune responses to mycobacterial antigen (purified protein derivative) were assayed using splenocytes from mice inoculated with various BCG recombinants. Antigen-specific proliferation and cytokine release were found to be substantially greater with splenocytes derived from mice injected with cytokine-secreting BCG than with splenocytes from mice injected with BCG lacking cytokines. The most profound effects were induced by BCG secreting interleukin 2, interferon gamma, or granulocyte-macrophage colony-stimulating factor. Thus, cytokine-secreting BCG can enhance immune responses to mycobacterial antigens and may be improved reagents for tuberculosis prophylaxis and cancer immunotherapy.
Resumo:
A recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vector-based vaccine that secretes the V3 principal neutralizing epitope of human immunodeficiency virus (HIV) could induce immune response to the epitope and prevent the viral infection. By using the Japanese consensus sequence of HIV-1, we successfully constructed chimeric protein secretion vectors by selecting an appropriate insertion site of a carrier protein and established the principal neutralizing determinant (PND)-peptide secretion system in BCG. The recombinant BCG (rBCG)-inoculated guinea pigs were initially screened by delayed-type hypersensitivity (DTH) skin reactions to the PND peptide, followed by passive transfer of the DTH by the systemic route. Further, immunization of mice with the rBCG resulted in induction of cytotoxic T lymphocytes. The guinea pig immune antisera showed elevated titers to the PND peptide and neutralized HIVMN, and administration of serum IgG from the vaccinated guinea pigs was effective in completely blocking the HIV infection in thymus/liver transplanted severe combined immunodeficiency (SCID)/hu or SCID/PBL mice. In addition, the immune serum IgG was shown to neutralize primary field isolates of HIV that match the neutralizing sequence motif by a peripheral blood mononuclear cell-based virus neutralization assay. The data support the idea that the antigen-secreting rBCG system can be used as a tool for development of HIV vaccines.
Resumo:
The ureABC genes of Mycobacterium tuberculosis were cloned. By using a set of degenerate primers corresponding to a conserved region of the urease enzyme (EC 3.5.1.5), a fragment of the expected size was amplified by PCR and was used to screen a M. tuberculosis cosmid library. Three open reading frames with extensive similarity to the urease genes from other organisms were found. The locus was mapped on the chromosome, using an ordered M. tuberculosis cosmid library. A suicide vector containing a ureC gene disrupted by a kanamycin marker (aph) was used to construct a urease-negative Mycobacterium bovis bacillus Calmette-Guérin mutant by allelic exchange involving replacement of the ureC gene with the aph::ureC construct. To our knowledge, allelic exchange has not been reported previously in the slow-growing mycobacteria. Homologous recombination will be an invaluable genetic tool for deciphering the mechanisms of tuberculosis pathogenesis, a disease that causes 3 x 10(6) deaths a year worldwide.
Resumo:
Alternative RNA polymerase sigma factors are a common means of coordinating gene regulation in bacteria. Using PCR amplification with degenerate primers, we identified and cloned a sigma factor gene, sigF, from Mycobacterium tuberculosis. The deduced protein encoded by sigF shows significant similarity to SigF sporulation sigma factors from Streptomyces coelicolor and Bacillus subtilis and to SigB, a stress-response sigma factor, from B. subtilis. Southern blot surveys with a sigF-specific probe identified cross-hybridizing bands in other slow-growing mycobacteria, Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mycobacterium avium, but not in the rapid-growers Mycobacterium smegmatis or Mycobacterium abscessus. RNase protection assays revealed that M. tuberculosis sigF mRNA is not present during exponential-phase growth in M. bovis BCG cultures but is strongly induced during stationary phase, nitrogen depletion, and cold shock. Weak expression of M. tuberculosis sigF was also detected during late-exponential phase, oxidative stress, anaerobiasis, and alcohol shock. The specific expression of M. tuberculosis sigF during stress or stationary phase suggests that it may play a role in the ability of tubercle bacilli to adapt to host defenses and persist during human infection.
Resumo:
The 5' region of the human lysozyme gene from -3500 to +25 was fused to a chloramphenicol acetyltransferase (CAT) reporter gene and three transgenic founder mice were obtained. All three transgenic lines showed the same pattern of CAT enzyme expression in adult mouse tissues that was consistent with the targeting of elicited, activated macrophages in tissues and developing and elicited granulocytes. In normal mice high CAT enzyme activity was found in the spleen, lung, and thymus, tissues rich in phagocytically active cells, but not in many other tissues, such as the gut and muscle, which contain resident macrophages. Cultured resident peritoneal macrophages and cells elicited 18 hr (granulocytes) and 4 days (macrophages) after injection of sterile thioglycollate broth expressed CAT activity. Bacillus Calmette-Guérin infection of transgenic mice resulted in CAT enzyme expression in the liver, which contained macrophage-rich granulomas, whereas the liver of uninfected mice did not have any detectable CAT enzyme activity. Although the Paneth cells of the small intestine in both human and mouse produce lysozyme, the CAT gene, under the control of the human lysozyme promoter, was not expressed in the mouse small intestine. These results indicate that the human lysozyme promoter region may be used to direct expression of genes to activated mouse myeloid cells.