3 resultados para Grunwald

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The action of calmodulin (CaM) on target proteins is important for a variety of cellular functions. We demonstrate here, however, that the presence of a CaM-binding site on a protein does not necessarily imply a functional effect. The α-subunit of the cGMP-gated cation channel of human retinal cones has a CaM-binding site on its cytoplasmic N-terminal region, but the homomeric channel that it forms is not functionally modulated by CaM. Mutational analysis based on comparison to the highly homologous olfactory cyclic nucleotide-gated channel α-subunit, which does form a CaM-modulated channel, indicates that residues downstream of the CaM-binding domain on these channels are also important for CaM to have an effect. These findings suggest that a CaM-binding site and complementary structural features in a protein probably evolve independently, and an effect caused by CaM occurs only in the presence of both elements. More generally, the same may be true for other recognized binding sites on proteins for modulators or activators, so that a demonstrated physical interaction does not necessarily imply functional consequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A technique is described that greatly increases the efficiency of recovering specific locus point mutations in zebrafish (Danio rerio). Founder individuals that were mosaic for point mutations were produced by mutagenizing postmeiotic gametes with the alkylating agent N-ethyl-N-nitrosourea. Under optimal conditions, each founder carried an average of 10 mutations affecting genes required for embryogenesis. Moreover, approximately 2% of these founders transmitted new mutations at any prespecified pigmentation locus. Analyses of new pigmentation mutations confirmed that most were likely to be point mutations. Thus, mutagenesis of postmeiotic gametes with N-ethyl-N-nitrosourea yielded frequencies of point mutations at specific loci that were 10- to 15-fold higher than previously achieved in zebrafish. Our procedure should, therefore, greatly facilitate recovery of multiple mutant alleles at any locus of interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-dependent eukaryotic DNA-binding protein that specifically recognizes DNA strand breaks produced by various genotoxic agents. To study the biological function of this enzyme, we have established stable HeLa cell lines that constitutively produce the 46-kDa DNA-binding domain of human PARP (PARP-DBD), leading to the trans-dominant inhibition of resident PARP activity. As a control, a cell line was constructed, producing a point-mutated version of the DBD, which has no affinity for DNA in vitro. Expression of the PARP-DBD had only a slight effect on undamaged cells but had drastic consequences for cells treated with genotoxic agents. Exposure of cell lines expressing the wild-type (wt) or the mutated PARP-DBD, with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in an increase in their doubling time, a G2 + M accumulation, and a marked reduction in cell survival. However, UVC irradiation had no preferential effect on the cell growth or viability of cell lines expressing the PARP-DBD. These PARP-DBD-expressing cells treated with MNNG presented the characteristic nucleosomal DNA ladder, one of the hallmarks of cell death by apoptosis. Moreover, these cells exhibited chromosomal instability as demonstrated by higher frequencies of both spontaneous and MNNG-induced sister chromatid exchanges. Surprisingly, the line producing the mutated DBD had the same behavior as those producing the wt DBD, indicating that the mechanism of action of the dominant-negative mutant involves more than its DNA-binding function. Altogether, these results strongly suggest that PARP is an element of the G2 checkpoint in mammalian cells.