13 resultados para Ground control point

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our recent studies have shown that deregulated expression of R2, the rate-limiting component of ribonucleotide reductase, enhances transformation and malignant potential by cooperating with activated oncogenes. We now demonstrate that the R1 component of ribonucleotide reductase has tumor-suppressing activity. Stable expression of a biologically active ectopic R1 in ras-transformed mouse fibroblast 10T½ cell lines, with or without R2 overexpression, led to significantly reduced colony-forming efficiency in soft agar. The decreased anchorage independence was accompanied by markedly suppressed malignant potential in vivo. In three ras-transformed cell lines, R1 overexpression resulted in abrogation or marked suppression of tumorigenicity. In addition, the ability to form lung metastases by cells overexpressing R1 was reduced by >85%. Metastasis suppressing activity also was observed in the highly malignant mouse 10T½ derived RMP-6 cell line, which was transformed by a combination of oncogenic ras, myc, and mutant p53. Furthermore, in support of the above observations with the R1 overexpressing cells, NIH 3T3 cells cotransfected with an R1 antisense sequence and oncogenic ras showed significantly increased anchorage independence as compared with control ras-transfected cells. Finally, characteristics of reduced malignant potential also were demonstrated with R1 overexpressing human colon carcinoma cells. Taken together, these results indicate that the two components of ribonucleotide reductase both are unique malignancy determinants playing opposing roles in its regulation, that there is a novel control point important in mechanisms of malignancy, which involves a balance in the levels of R1 and R2 expression, and that alterations in this balance can significantly modify transformation, tumorigenicity, and metastatic potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-γ, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-γ-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC β and γ subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC α subunit (αS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the αS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that αS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylserine (PtdSer) synthesis in Chinese hamster ovary (CHO) cells occurs through the exchange of l-serine with the base moiety of phosphatidylcholine or phosphatidylethanolamine. The synthesis is depressed on the addition of PtdSer to the culture medium. A CHO cell mutant named mutant 29, whose PtdSer biosynthesis is highly resistant to this depression by exogenous PtdSer, has been isolated from CHO-K1 cells. In the present study, the PtdSer-resistant PtdSer biosynthesis in the mutant was traced to a point mutation in the PtdSer synthase I gene, pssA, resulting in the replacement of Arg-95 of the synthase by lysine. Introduction of the mutant pssA cDNA, but not the wild-type pssA cDNA, into CHO-K1 cells induced the PtdSer-resistant PtdSer biosynthesis. In a cell-free system, the serine base-exchange activity of the wild-type pssA-transfected cells was inhibited by PtdSer, but that of the mutant pssA-transfected cells was resistant to the inhibition. Like the mutant 29 cells, the mutant pssA-transfected cells grown without exogenous PtdSer exhibited an ≈2-fold increase in the cellular PtdSer level compared with that in CHO-K1 cells, although the wild-type pssA-transfected cells did not exhibit such a significant increase. These results indicated that the inhibition of PtdSer synthase I by PtdSer is essential for the maintenance of a normal PtdSer level in CHO-K1 cells and that Arg-95 of the synthase is a crucial residue for the inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inward-rectifier K+ channels of the ROMK (Kir1.1) subtype are responsible for K+ secretion and control of NaCl absorption in the kidney. A hallmark of these channels is their gating by intracellular pH in the neutral range. Here we show that a lysine residue close to TM1, identified previously as a structural element required for pH-induced gating, is protonated at neutral pH and that this protonation drives pH gating in ROMK and other Kir channels. Such anomalous titration of this lysine residue (Lys-80 in Kir1.1) is accomplished by the tertiary structure of the Kir protein: two arginines in the distant N and C termini of the same subunit (Arg-41 and Arg-311 in Kir1.1) are located in close spatial proximity to the lysine allowing for electrostatic interactions that shift its pKa into the neutral pH range. Structural disturbance of this triad as a result from a number of point mutations found in patients with antenatal Bartter syndrome shifts the pKa of the lysine residue off the neutral pH range and results in channels permanently inactivated under physiological conditions. Thus, the results provide molecular understanding for normal pH gating of Kir channels as well as for the channel defects found in patients with antenatal Bartter syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27Kip1, and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently discovered aging-dependent large accumulation of point mutations in the human fibroblast mtDNA control region raised the question of their occurrence in postmitotic tissues. In the present work, analysis of biopsied or autopsied human skeletal muscle revealed the absence or only minimal presence of those mutations. By contrast, surprisingly, most of 26 individuals 53 to 92 years old, without a known history of neuromuscular disease, exhibited at mtDNA replication control sites in muscle an accumulation of two new point mutations, i.e., A189G and T408A, which were absent or marginally present in 19 individuals younger than 34 years. These two mutations were not found in fibroblasts from 22 subjects 64 to 101 years of age (T408A), or were present only in three subjects in very low amounts (A189G). Furthermore, in several older individuals exhibiting an accumulation in muscle of one or both of these mutations, they were nearly absent in other tissues, whereas the most frequent fibroblast-specific mutation (T414G) was present in skin, but not in muscle. Among eight additional individuals exhibiting partial denervation of their biopsied muscle, four subjects >80 years old had accumulated the two muscle-specific point mutations, which were, conversely, present at only very low levels in four subjects ≤40 years old. The striking tissue specificity of the muscle mtDNA mutations detected here and their mapping at critical sites for mtDNA replication strongly point to the involvement of a specific mutagenic machinery and to the functional relevance of these mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general transcription initiation factor TFIID was originally identified, purified, and characterized with a biochemical assay in which accurate transcription initiation is reconstituted with multiple, chromatographically separable activities. Biochemical analyses have demonstrated that TFIID is a multiprotein complex that directs preinitiation complex assembly on both TATA box-containing and TATA-less promoters, and some TFIID subunits have been shown to be molecular targets for activation domains in DNA-binding regulatory proteins. These findings have most commonly been interpreted to support the view that transcriptional activation by upstream factors is the result of enhanced TFIID recruitment to the core promoter. Recent insights into the architecture and cell-cycle regulation of the multiprotein TFIID complex prompt both a reassessment of the functional role of TFIID in gene activation and a review of some of the less well-appreciated literature on TFIID. We present a speculative model for diverse functional roles of TFIID in the cell, explore the merits of the model in the context of published data, and suggest experimental approaches to resolve unanswered questions. Finally, we point out how the proposed functional roles of TFIID in eukaryotic class II transcription fit into a model for promoter recognition and activation that applies to both eubacteria and eukaryotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription of the genes for the human histone proteins H4, H3, H2A, H2B, and H1 is activated at the G1/S phase transition of the cell cycle. We have previously shown that the promoter complex HiNF-D, which interacts with cell cycle control elements in multiple histone genes, contains the key cell cycle factors cyclin A, CDC2, and a retinoblastoma (pRB) protein-related protein. However, an intrinsic DNA-binding subunit for HiNF-D was not identified. Many genes that are up-regulated at the G1/S phase boundary are controlled by E2F, a transcription factor that associates with cyclin-, cyclin-dependent kinase-, and pRB-related proteins. Using gel-shift immunoassays, DNase I protection, and oligonucleotide competition analyses, we show that the homeodomain protein CDP/cut, not E2F, is the DNA-binding subunit of the HiNF-D complex. The HiNF-D (CDP/cut) complex with the H4 promoter is immunoreactive with antibodies against CDP/cut and pRB but not p107, whereas the CDP/cut complex with a nonhistone promoter (gp91-phox) reacts only with CDP and p107 antibodies. Thus, CDP/cut complexes at different gene promoters can associate with distinct pRB-related proteins. Transient coexpression assays show that CDP/cut modulates H4 promoter activity via the HiNF-D-binding site. Hence, DNA replication-dependent histone H4 genes are regulated by an E2F-independent mechanism involving a complex of CDP/cut with cyclin A/CDC2/ RB-related proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hibernation patterns were monitored continuously for 2.5 years in female squirrels that were neurologically intact or in which the hypothalamic suprachiasmatic nucleus (SCN) was completely ablated (SCNx). The number of hibernation bouts in SCNx squirrels increased by 159%, total hibernation time increased by 58%, and periodic arousals from hibernation were 47% longer in SCNx than in control squirrels; the duration of individual torpor bouts was 2 days shorter and far more variable in SCNx than in control animals. Some SCNx squirrels cycled through bouts of torpor continuously for nearly 2 years. The SCN appears to be part of the mechanism that controls the duration of the hibernation season and the temporal structure of individual torpor bouts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Addition of a saturated fatty acid (SFA) induced a strong increase in heat shock (HS) mRNA transcription when cells were heat-shocked at 37 degrees C, whereas treatment with an unsaturated fatty acid (UFA) reduced or eliminated the level of HS gene transcription at 37 degrees C. Transcription of the delta 9-desaturase gene (Ole1) of Histoplasma capsulatum, whose gene product is responsible for the synthesis of UFA, is up-regulated in a temperature-sensitive strain. We show that when the L8-14C mutant of Saccharomyces cerevisiae, which has a disrupted Ole1 gene, is complemented with its own Ole1 coding region under control of its own promoter or Ole1 promoters of H. capsulatum, the level of HS gene transcription depends on the activity of the promoters. Fluorescence anisotropy of mitochondrial membranes of completed strains corresponded to the different activity of the Ole1 promoter used. We propose that the SFA/UFA ratio and perturbation of membrane lipoprotein complexes are involved in the perception of rapid temperature changes and under HS conditions disturbance of the preexisting membrane physical state causes transduction of a signal that induces transcription of HS genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report a recessive mutation, immune deficiency (imd), that impairs the inducibility of all genes encoding antibacterial peptides during the immune response of Drosophila. When challenged with bacteria, flies carrying this mutation show a lower survival rate than wild-type flies. We also report that, in contrast to the antibacterial peptides, the antifungal peptide drosomycin remains inducible in a homozygous imd mutant background. These results point to the existence of two different pathways leading to the expression of two types of target genes, encoding either the antibacterial peptides or the antifungal peptide drosomycin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA repair is required by organisms to prevent the accumulation of mutations and to maintain the integrity of genetic information. Mammalian cells that have been treated with agents that damage DNA have an increase in p53 levels, a p53-dependent arrest at G1 in the cell cycle, and a p53-dependent apoptotic response. It has been hypothesized that this block in cell cycle progression is necessary to allow time for DNA repair or to direct the damaged cell to an apoptotic pathway. This hypothesis predicts that p53-deficient cells would have an abnormal apoptotic response and exhibit a "mutator" phenotype. Using a sensitive assay for the accumulation of point mutations, small deletions, and insertions, we have directly tested whether p53-deficient cells exhibit an increased frequency of mutation before and after exposure to DNA-damaging agents. We report that wild-type and p53-deficient fibroblasts, thymocytes, and tumor tissue have indistinguishable rates of point mutation accumulation in a transgenic lacI target gene. These results suggest that the role of p53 in G1 checkpoint control and tumor suppression does not affect the accumulation of point mutations.