3 resultados para Graded Identities
em National Center for Biotechnology Information - NCBI
Resumo:
Threshold mechanisms of transcriptional activation are thought to be critical for translating continuous gradients of extracellular signals into discrete all-or-none cellular responses, such as mitogenesis and differentiation. Indeed, unequivocal evidence for a graded transcriptional response in which the concentration of inducer directly correlates with the level of gene expression in individual eukaryotic cells is lacking. By using a novel binary tetracycline regulatable retroviral vector system, we observed a graded rather than a threshold mechanism of transcriptional activation in two different model systems. When polyclonal populations of cells were analyzed at the single cell level, a dose-dependent, stepwise increase in expression of the reporter gene, green fluorescent protein (GFP), was observed by fluorescence-activated cell sorting. These data provide evidence that, in addition to the generally observed all-or-none switch, the basal transcription machinery also can respond proportionally to changes in concentration of extracellular inducers and trancriptional activators.
Resumo:
The adhesive core of the desmosome is composed of cadherin-like glycoproteins of two families, desmocollins and desmogleins. Three isoforms of each are expressed in a tissue-specific and developmentally regulated pattern. In bovine nasal epidermis, the three desmocollin (Dsc) isoforms are expressed in overlapping domains; Dsc3 expression is strongest in the basal layer, while Dsc2 and Dsc1 are strongly expressed in the suprabasal layers. Herein we have investigated whether different isoforms are assembled into the same or distinct desmosomes by performing double immunogold labeling using isoform-specific antibodies directed against Dsc1 and Dsc3. The results show that individual desmosomes harbor both isoforms in regions where their expression territories overlap. Quantification showed that the ratio of the proteins in each desmosome altered gradually from basal to immediately suprabasal and upper suprabasal layers, labeling for Dsc1 increasing and Dsc3 decreasing. Thus desmosomes are constantly modified as cells move up the epidermis, with continuing turnover of the desmosomal glycoproteins. Statistical analysis of the quantitative data showed a possible relationship between the distributions of the two isoforms. This gradual change in desmosomal composition may constitute a vertical adhesive gradient within the epidermis, having important consequences for cell positioning and differentiation.