9 resultados para Gonadotropins, Chorionic
em National Center for Biotechnology Information - NCBI
Resumo:
This study was undertaken to determine the modulation of uterine function by chorionic gonadotrophin (CG) in a nonhuman primate. Infusion of recombinant human CG (hCG) between days 6 and 10 post ovulation initiated the endoreplication of the uterine surface epithelium to form distinct epithelial plaques. These plaque cells stained intensely for cytokeratin and the proliferating cell nuclear antigen. The stromal fibroblasts below the epithelial plaques stained positively for α-smooth muscle actin (αSMA). Expression of αSMA is associated with the initiation of decidualization in the baboon endometrium. Synthesis of the glandular secretory protein glycodelin, as assessed by Western blot analysis, was markedly up-regulated by hCG, and this increase was confirmed by immunocytochemistry, Northern blot analysis, and reverse transcriptase-PCR. To determine whether hCG directly modulated these uterine responses, we treated ovariectomized baboons sequentially with estradiol and progesterone to mimic the hormonal profile of the normal menstrual cycle. Infusion of hCG into the oviduct of steroid-hormone-treated ovariectomized baboons induced the expression of αSMA in the stromal cells and glycodelin in the glandular epithelium. The epithelial plaque reaction, however, was not readily evident. These studies demonstrate a physiological effect of CG on the uterine endometrium in vivo and suggest that the primate blastocyst signal, like the blastocyst signals of other species, modulates the uterine environment prior to implantation.
Resumo:
Although it is well established that the secretory activity of the corpus luteum absolutely depends on the presence of pituitary-derived luteinizing hormone (LH), it is unknown why the life span of the corpus luteum is extended during early pregnancy by the placental production of chorionic gonadotropin (CG) but regresses in the presence of LH despite the fact that CG and LH have similar actions on the corpus luteum. To compare the responses of the corpus luteum to LH and human CG (hCG), cynomolgus monkeys whose endogenous gonadotropin secretion was blocked during the luteal phase of the menstrual cycle with a gonadotropin-releasing hormone antagonist were i.v. infused with either LH or CG. Infusion of LH at a constant rate overcame the gonadotropin-releasing hormone antagonist-mediated premature luteal regression but failed to prolong the functional life span of the corpus luteum. Continuous infusions of hCG did not effect a pregnancy-like pattern of gonadotropin secretion, but the functional life span of the corpus luteun was extended in two of three animals. Infusion of either LH or hCG in an exponentially increasing manner prolonged the functional life span of the corpus luteum beyond its normal duration. These results indicate that luteal regression at the termination of nonfertile menstrual cycles is caused by a large reduction in the responsiveness of the aging corpus luteum to LH, which can be overcome by elevated concentrations of either LH or CG.
Resumo:
Progesterone receptors appear in granuloma cells of preovulatory follicles after the midcycle gonadotropin surge, suggesting important local actions of progesterone during ovulation in primates. Steroid reduction and replacement during the gonadotropin surge in macaques was used to evaluate the role of progesterone in the ovulatory process. Animals received gonadotropins to induce development of multiple preovulatory follicles, followed by human chorionic gonadotropin (hCG) administration (day 0) to promote oocyte (nuclear) maturation, ovulation, and follicular luteinization. On days 0-2, animals received no further treatment; a steroid synthesis inhibitor, trilostane (TRL); TRL + R5020; or TRL + dihydrotestosterone propionate (DHT). On day 3, ovulation was confirmed by counting ovulation sites and collecting oviductal oocytes. The meiotic status of oviductal and remaining follicular oocytes was evaluated. Peak serum estradiol levels, the total number of large follicles, and baseline serum progesterone levels at the time of hCG administration were similar in all animals. Ovulation sites and oviductal oocytes were routinely observed in controls. Ovulation was abolished in TRL. Progestin, but not androgen, replacement restored ovulation. Relative to controls, progesterone production was impaired for the first 6 days post-hCG in TRL, TRL + R5020, and TRL + DHT. Thereafter, progesterone remained low in TRL but recovered to control levels with progestin and androgen replacement. Similar percentages of mature (metaphase II) oocytes were collected among groups. Thus, steroid reduction during the gonadotropin surge inhibited ovulation and luteinization, but not reinitiation of oocyte meiotic maturation, in the primate follicle. The data are consistent with a local receptor-mediated role for progesterone in the ovulatory process.
Resumo:
We show here that elevated levels of gonadotropins (luteinizing hormone and follicle stimulating hormone), as found in menopause or after ovariectomy, promote growth of human ovarian carcinoma by induction of tumor angiogenesis. Human epithelial ovarian cancer tumors progressed faster in ovariectomized mice. This induced growth could be attributed to the elevated levels of gonadotropins associated with loss of ovarian function because direct administration of gonadotropins also was effective in promoting tumor progression in vivo. On the other hand, gonadotropins had no direct effect on the proliferation of human ovarian cancer cells in vitro. Using MRI, we demonstrated that ovariectomy significantly (P < 0.02) induces neovascularization of human ovarian carcinoma spheroids implanted in nude mice. Moreover, conditioned medium of gonadotropin-treated human ovarian carcinoma cells showed increased mitogenic activity to bovine endothelial cells, and this activity could be blocked by neutralizing antibodies against luteinizing hormone and against vascular endothelial growth factor. Accordingly, gonadotropin stimulation resulted in a dose-dependent-induced expression of vascular endothelial growth factor in monolayer culture as well as in the outer proliferating cells of human ovarian cancer spheroids. These results demonstrate the significance of the elevated levels of gonadotropins, as found in menopause and in all ovarian cancer patients, on the progression of ovarian cancer and could explain the protective effect of estrogen replacement therapy. Based on these results, we suggest that hormonal therapy aimed at lowering the circulating levels of gonadotropins may possibly prolong remission in ovarian cancer by extending tumor dormancy.
Resumo:
Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R −/− mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R −/− mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility.
Resumo:
In the goldfish (Carassius auratus) the two endogenous forms of gonadotropin-releasing hormone (GnRH), namely chicken GnRH II ([His5,Trp7,Tyr8]GnRH) and salmon GnRH ([Trp7,Leu8]GnRH), stimulate the release of both gonadotropins and growth hormone from the pituitary. This control is thought to occur by means of the stimulation of distinct GnRH receptors. These receptors can be distinguished on the basis of differential gonadotropin and growth hormone releasing activities of naturally occurring GnRHs and GnRHs with variant amino acids in position 8. We have cloned the cDNAs of two GnRH receptors, GfA and GfB, from goldfish brain and pituitary. Although the receptors share 71% identity, there are marked differences in their ligand selectivity. Both receptors are expressed in the pituitary but are differentially expressed in the brain, ovary, and liver. Thus we have found and cloned two full-length cDNAs that appear to correspond to different forms of GnRH receptor, with distinct pharmacological characteristics and tissue distribution, in a single species.
Resumo:
A previously unidentified gonadotropin-regulated long chain acyl-CoA synthetase (GR-LACS) was cloned and characterized as a 79-kDa cytoplasmic protein expressed in Leydig cells of the rat testis. GR-LACS shares sequence identity with two conserved regions of the LACS and luciferase families, including the ATP/AMP binding domain and the 25-aa fatty acyl-CoA synthetase signature motif, but displays low overall amino acid similarities (23–28%). GR-LACS mRNA is expressed abundantly in Leydig cells of the adult testis and to a lesser degree in the seminiferous tubules in spermatogonia and Sertoli cells. It is also observed in ovary and brain. Immunoreactive protein expression was observed mainly in Leydig cells and minimally in the tubules but was not detected in other tissues. In vivo, treatment with a desensitizing dose of human chorionic gonadotropin caused transcriptional down-regulation of GR-LACS expression in Leydig cells. The expressed protein present in the cytoplasm of transfected cells displayed acyl-CoA synthetase activity for long chain fatty acid substrates. GR-LACS may contribute to the provision of energy requirements and to the biosynthesis of steroid precursors and could participate through acyl-CoA's multiple functions in the regulation of the male gonad.
Resumo:
Antagonists of luteinizing hormone-releasing hormone (LH-RH), unlike the LH-RH agonists, suppress gonadotropins and sex steroid secretion immediately after administration, without initial stimulatory effects. [Ac-D-Nal(2)1,D-Ph(4Cl)2,D-Pal(3)3,D-Cit6,D-Ala10]LH-R H (SB-75; Cetrorelix) is a modern, potent antagonistic analog of LH-RH. In this study, the binding characteristics of receptors for LH-RH in membrane fractions from rat anterior pituitaries were investigated after a single injection of Cetrorelix at a dose of 100 microg per rat. To determine whether the treatment with Cetrorelix can affect the concentration of measurable LH-RH binding sites, we applied an in vitro method to desaturate LH-RH receptors by chaotropic agents such as manganous chloride (MnCl2) and ammonium thiocyanate (NH4SCN). Our results show that the percentages of occupied LH-RH receptors at 1, 3, and 6 h after administration of Cetrorelix were approximately 28%, 14%, and 10%, respectively, of total receptors. At later time intervals, we could not detect occupied LH-RH binding sites. Ligand competition assays, following in vitro desaturation, demonstrated that rat pituitary LH-RH receptors were significantly (P < 0.01) down-regulated for at least 72 h after administration of Cetrorelix. The lowest receptor concentration was found 3-6 h after Cetrorelix treatment and a recovery in receptor number began within approximately 24 h. The down-regulation of LH-RH binding sites induced by Cetrorelix was accompanied by serum LH and testosterone suppression. Higher LH-RH receptor concentrations coincided with elevated serum hormone levels at later time intervals. Our results indicate that administration of LH-RH antagonist Cetrorelix produces a marked down-regulation of pituitary receptors for LH-RH and not merely an occupancy of binding sites.
Resumo:
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81) that are characteristic of human embryonal carcinoma cells. R278.5 cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers but differentiate or die in the absence of fibroblasts, despite the presence of recombinant human leukemia inhibitory factor. R278.5 cells allowed to differentiate in vitro secrete bioactive chorionic gonadotropin into the medium, express chorionic gonadotropin alpha- and beta-subunit mRNAs, and express alpha-fetoprotein mRNA, indicating trophoblast and endoderm differentiation. When injected into severe combined immunodeficient mice, R278.5 cells consistently differentiate into derivatives of all three embryonic germ layers. These results define R278.5 cells as an embryonic stem cell line, to our knowledge, the first to be derived from any primate species.