2 resultados para Gold mines and mining.
em National Center for Biotechnology Information - NCBI
Resumo:
Gold(I) salts and selenite, which have diverse therapeutic and biological effects, are noted for their reactivity with thiols. Since the binding of Jun-Jun and Jun-Fos dimers to the AP-1 DNA binding site is regulated in vitro by a redox process involving conserved cysteine residues, we hypothesized that some of the biological actions of gold and selenium are mediated via these residues. In electrophoretic mobility-shift analyses, AP-1 DNA binding was inhibited by gold(I) thiolates and selenite, with 50% inhibition occurring at approximately 5 microM and 1 microM, respectively. Thiomalic acid had no effect in the absence of gold(I), and other metal ions inhibited at higher concentrations, in a rank order correlating with their thiol binding affinities. Cysteine-to-serine mutants demonstrated that these effects of gold(I) and selenite require Cys272 and Cys154 in the DNA-binding domains of Jun and Fos, respectively. Gold(I) thiolates and selenite did not inhibit nonspecific protein binding to the AP-1 site and were at least an order of magnitude less potent as inhibitors of sequence-specific binding to the AP-2, TFIID, or NF1 sites compared with the AP-1 site. In addition, 10 microM gold(I) or 10 microM selenite inhibited expression of an AP-1-dependent reporter gene, but not an AP-2-dependent reporter gene. These data suggest a mechanism regulating transcription factor activity by inorganic ions which may contribute to the known antiarthritic action of gold and cancer chemoprevention by selenium.
Resumo:
The capsid protein of hepatitis B virus, consisting of an “assembly” domain (residues 1–149) and an RNA-binding “protamine” domain (residues 150–183), assembles from dimers into icosahedral capsids of two different sizes. The C terminus of the assembly domain (residues 140–149) functions as a morphogenetic switch, longer C termini favoring a higher proportion of the larger capsids, it also connects the protamine domain to the capsid shell. We now have defined the location of this peptide in capsids assembled in vitro by engineering a mutant assembly domain with a single cysteine at its C terminus (residue 150), labeling it with a gold cluster and visualizing the cluster by cryo-electron microscopy. The labeled protein is unimpaired in its ability to form capsids. Our density map reveals a single undecagold cluster under each fivefold and quasi-sixfold vertex, connected to sites at either end of the undersides of the dimers. Considering the geometry of the vertices, the C termini must be more crowded at the fivefolds. Thus, a bulky C terminus would be expected to favor formation of the larger (T = 4) capsids, which have a greater proportion of quasi-sixfolds. Capsids assembled by expressing the full-length protein in Escherichia coli package bacterial RNAs in amounts equivalent to the viral pregenome. Our density map of these capsids reveals a distinct inner shell of density—the RNA. The RNA is connected to the protein shell via the C-terminal linkers and also makes contact around the dimer axes.