13 resultados para Glucose concentration measurement
em National Center for Biotechnology Information - NCBI
Resumo:
Chronic exposure of HIT-T15 beta cells to elevated glucose concentrations leads to decreased insulin gene transcription. The reduction in expression is accompanied by diminished binding of a glucose-sensitive transcription factor (termed GSTF) that interacts with two (A+T)-rich elements within the 5' flanking control region of the insulin gene. In this study we examined whether GSTF corresponds to the recently cloned insulin gene transcription factor STF-1, a homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and pancreas. We found that an affinity-purified antibody recognizing STF-1 supershifted the GSTF activator complex formed from HIT-T15 extracts. In addition, we demonstrated a reduction in STF-1 mRNA and protein levels that closely correlated with the change in GSTF binding in HIT-T15 cells chronically cultured under supraphysiologic glucose concentrations. The reduction in STF-1 expression in these cells could be accounted for by a change in the rate of STF-1 gene transcription, suggesting a posttranscriptional control mechanism. In support of this hypothesis, no STF-1 mRNA accumulated in HIT-T15 cells passaged in 11.1 mM glucose. The only RNA species detected was a 6.4-kb STF-1 RNA species that hybridized with 5' and 3' STF-1-specific cDNA probes. We suggest that the 6.4-kb RNA represents an STF-1 mRNA precursor and that splicing of this RNA is defective in these cells. Overall, this study suggests that reduced expression of a key transcriptional regulatory factor, STF-1, contributes to the decrease in insulin gene transcription in HIT-T15 cells chronically cultured in supraphysiologic glucose concentration.
Resumo:
The performance of an amperometric biosensor, consisting of a subcutaneously implanted miniature (0.29 mm diameter, 5 × 10−4 cm2 mass transporting area), 90 s 10–90% rise/decay time glucose electrode, and an on-the-skin electrocardiogram Ag/AgCl electrode was tested in an unconstrained, naturally diabetic, brittle, type I, insulin-dependent chimpanzee. The chimpanzee was trained to wear on her wrist a small electronic package and to present her heel for capillary blood samples. In five sets of measurements, averaging 5 h each, 82 capillary blood samples were assayed, their concentrations ranging from 35 to 400 mg/dl. The current readings were translated to blood glucose concentration by assaying, at t = 1 h, one blood sample for each implanted sensor. The rms error in the correlation between the sensor-measured glucose concentration and that in capillary blood was 17.2%, 4.9% above the intrinsic 12.3% rms error of the Accu-Chek II reference, through which the illness of the chimpanzee was routinely managed. Linear regression analysis of the data points taken at t>1 h yielded the relationship (Accu-Chek) = 0.98 × (implanted sensor) + 4.2 mg/dl, r2 = 0.94. The capillary blood and the subcutaneous glucose concentrations were statistically indistinguishable when the rate of change was less than 1 mg/(dl⋅min). However, when the rate of decline exceeded 1.8 mg/(dl⋅min) after insulin injection, the subcutaneous glucose concentration was transiently higher.
Resumo:
Streptozotocin (STZ), a glucose analogue known to induce diabetes in experimental animals, causes DNA strand breaks and subsequent activation of poly(ADPribose) polymerase (Parp). Because Parp uses NAD as a substrate, extensive DNA damage will result in reduction of cellular NAD level. In fact, STZ induces NAD depletion and cell death in isolated pancreatic islets in vitro. Activation of Parp therefore is thought to play an important role in STZ-induced diabetes. In the present study, we established Parp-deficient (Parp−/−) mice by disrupting Parp exon 1 by using the homologous recombination technique. These mice were used to examine the possible involvement of Parp in STZ-induced β-cell damage in vivo. The wild-type (Parp+/+) mice showed significant increases in blood glucose concentration from 129 mg/dl to 218, 370, 477, and 452 mg/dl on experimental days 1, 7, 21, and 60, respectively, after a single injection of 180 mg STZ/kg body weight. In contrast, the concentration of blood glucose in Parp−/− mice remained normal up to day 7, slightly increased on day 21, but returned to normal levels on day 60. STZ injection caused extensive necrosis in the islets of Parp+/+ mice on day 1, with subsequent progressive islet atrophy and loss of functional β cells from day 7. In contrast, the extent of islet β-cell death and dysfunction was markedly less in Parp−/− mice. Our findings clearly implicate Parp activation in islet β-cell damage and glucose intolerance induced by STZ in vivo.
Resumo:
Objective: To evaluate the impact of the revised diagnostic criteria for diabetes mellitus adopted by the American Diabetes Association on prevalence of diabetes and on classification of patients. For epidemiological purposes the American criteria use a fasting plasma glucose concentration ⩾7.0 mmol/l in contrast with the current World Health Organisation criteria of 2 hour glucose concentration ⩾11.1 mmol/l.
Resumo:
An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli.
Resumo:
Using a new NMR correlation-peak imaging technique, we were able to investigate noninvasively the spatial distribution of carbohydrates and amino acids in the hypocotyl of castor bean seedlings. In addition to the expected high sucrose concentration in the phloem area of the vascular bundles, we could also observe high levels of sucrose in the cortex parenchyma, but low levels in the pith parenchyma. In contrast, the glucose concentration was found to be lower in the cortex parenchyma than in the pith parenchyma. Glutamine and/or glutamate was detected in the cortex parenchyma and in the vascular bundles. Lysine and arginine were mainly visible in the vascular bundles, whereas valine was observed in the cortex parenchyma, but not in the vascular bundles. Although the physiological significance of these metabolite distribution patterns is not known, they demonstrate the potential of spectroscopic NMR imaging to study noninvasively the physiology and spatial metabolic heterogeneity of living plants.
Resumo:
Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12°C). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.
Resumo:
In an attempt to define the mechanism of insulin-regulated glucose transporter 4 (Glut4) translocation, we have developed an in vitro reconstitution assay. Donor membranes from 3T3-L1 adipocytes transfected with mycGlut4 were incubated with plasma membrane (PM) from nontransfected 3T3-L1 cells, and the association was assessed by using two types of centrifugation assays. Association of mycGlut4 vesicles derived from donor membranes with the PM was concentration-, temperature-, time-, and Ca2+-dependent but ATP-independent. Addition of a syntaxin 4 fusion protein produced a biphasic response, increasing association at low concentration and inhibiting association at higher concentrations. PM from insulin-stimulated cells showed an enhanced association as compared with those from untreated cells. Use of donor membranes from insulin-stimulated cells further enhanced the association and also enhanced association to the PM from isolated rat adipocytes. Addition of cytosol, GTP, or guanosine 5′-[γ-thio]triphosphate decreased the association. In summary, insulin-induced Glut4 translocation can be reconstituted in vitro to a limited extent by using isolated membranes. This association appears to involve protein–protein interactions among the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. Finally, the ability of insulin to enhance association depends on insulin-induced changes in the PM and, to a lesser extent, in the donor membranes.
Resumo:
It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992–1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.
Resumo:
Pancreatic beta cells exhibit oscillations in electrical activity, cytoplasmic free Ca2+ concentration ([Ca2+](i)), and insulin release upon glucose stimulation. The mechanism by which these oscillations are generated is not known. Here we demonstrate fluctuations in the activity of the ATP-dependent K+ channels (K(ATP) channels) in single beta cells subject to glucose stimulation or to stimulation with low concentrations of tolbutamide. During stimulation with glucose or low concentrations of tolbutamide, K(ATP) channel activity decreased and action potentials ensued. After 2-3 min, despite continuous stimulation, action potentials subsided and openings of K(ATP) channels could again be observed. Transient suppression of metabolism by azide in glucose-stimulated beta cells caused reversible termination of electrical activity, mimicking the spontaneous changes observed with continuous glucose stimulation. Thus, oscillations in K(ATP) channel activity during continuous glucose stimulation result in oscillations in electrical activity and [Ca2+](i).
Resumo:
Insulin secretion has been studied in isolated rat pancreatic islets under stringent Ca(2+)-depleted, Ca(2+)-free conditions. Under these conditions, the effect of 16.7 mM glucose to stimulate insulin release was abolished. Forskolin, which activates adenylyl cyclase, also failed to stimulate release in the presence of either low or high glucose concentrations. A phorbol ester (phorbol 12-myristate 13-acetate; PMA) increased the release rate slightly and this was further increased by 16.7 mM glucose. Remarkably, in the presence of both forskolin and PMA, 16.7 mM glucose strongly augmented insulin release. The augmentation was concentration dependent and monophasic and had a temporal profile similar to the "second phase" of glucose-stimulated insulin release, which is seen under normal conditions when Ca2+ is present. Metabolism is required for the effect because mannoheptulose abolished the glucose response. Other nutrient secretagogues, alpha-ketoisocaproate, and the combination of leucine and glutamine augmented release under the same conditions. Norepinephrine, a physiological inhibitor of insulin secretion, totally blocked the stimulation of release by forskolin and PMA and the augmentation of release by glucose. Thus, under the stringent Ca(2+)-free conditions imposed, the stimulation of insulin release by forskolin and PMA, as well as the augmentation of release by glucose, is under normal physiological control. As no increase in intracellular [Ca2+] was observed, the results demonstrate that glucose can increase the rate of exocytosis and insulin release by pancreatic islets in a Ca(2+)-independent manner. This interesting pathway of stimulus-secretion coupling for glucose appears to exert its effect at a site beyond the usual elevation of intracellular [Ca2+] and is not due to an activation by glucose of protein kinase A or C.
Resumo:
Simultaneous measurements of cytosolic free Ca2+ concentration and insulin release, in mouse single pancreatic islets, revealed a direct correlation only initially after stimulation with glucose or K+. Later, there is an apparent dissociation between these two parameters, with translocation of alpha and epsilon isoenzymes of protein kinase C to membranes and simultaneous desensitization of insulin release in response to glucose. Recovery of insulin release, without any concomitant changes in cytosolic free Ca2+ concentration, after addition of phorbol 12-myristate 13-acetate, okadaic acid, and forskolin supports the notion that the desensitization process is accounted for by dephosphorylation of key regulatory sites of the insulin exocytotic machinery.
Resumo:
The acute effects of contraction and insulin on the glucose transport and GLUT4 glucose transporter translocation were investigated in rat soleus muscles by using a 3-O-methylglucose transport assay and the sensitive exofacial labeling technique with the impermeant photoaffinity reagent 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannose-4-y loxy)-2- propylamine (ATB-BMPA), respectively. Addition of wortmannin, which inhibits phosphatidylinositol 3-kinase, reduced insulin-stimulated glucose transport (8.8 +/- 0.5 mumol per ml per h vs. 1.4 +/- 0.1 mumol per ml per h) and GLUT4 translocation [2.79 +/- 0.20 pmol/g (wet muscle weight) vs. 0.49 +/- 0.05 pmol/g (wet muscle weight)]. In contrast, even at a high concentration (1 microM), wortmannin had no effect on contraction-mediated glucose uptake (4.4 +/- 0.1 mumol per ml per h vs. 4.1 +/- 0.2 mumol per ml per h) and GLUT4 cell surface content [1.75 +/- 0.16 pmol/g (wet muscle weight) vs. 1.52 +/- 0.16 pmol/g (wet muscle weight)]. Contraction-mediated translocation of the GLUT4 transporters to the cell surface was closely correlated with the glucose transport activity and could account fully for the increment in glucose uptake after contraction. The combined effects of contraction and maximal insulin stimulation were greater than either stimulation alone on glucose transport activity (11.5 +/- 0.4 mumol per ml per h vs. 5.6 +/- 0.2 mumol per ml per h and 9.0 +/- 0.2 mumol per ml per h) and on GLUT4 translocation [4.10 +/- 0.20 pmol/g (wet muscle weight) vs. 1.75 +/- 0.25 pmol/g (wet muscle weight) and 3.15 +/- 0.18 pmol/g (wet muscle weight)]. The results provide evidence that contraction stimulates translocation of GLUT4 in skeletal muscle through a mechanism distinct from that of insulin.