75 resultados para Glucocorticoid Residues

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

From early in the AIDS epidemic, psychosocial stressors have been proposed as contributors to the variation in disease course. To test this hypothesis, rhesus macaques were assigned to stable or unstable social conditions and were inoculated with the simian immunodeficiency virus. Animals in the unstable condition displayed more agonism and less affiliation, shorter survival, and lower basal concentrations of plasma cortisol compared with stable animals. Early after inoculation, but before the emergence of group differences in cortisol levels, animals receiving social threats had higher concentrations of simian immunodeficiency virus RNA in plasma, and those engaging in affiliation had lower concentrations. The results indicate that social factors can have a significant impact on the course of immunodeficiency disease. Socially induced changes in pituitary–adrenal hormones may be one mechanism mediating this relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has shown that glucocorticoid hormones facilitate the behavioral and dopaminergic effects of morphine. In this study we examined the possible role in these effects of the two central corticosteroid receptor types: mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). To accomplish this, specific antagonists of these receptors were infused intracerebroventricularly and 2 hr later we measured: (i) locomotor activity induced by a systemic injection of morphine (2 mg/kg); (ii) locomotor activity induced by an infusion of morphine (1 μg per side) into the ventral tegmental area, which is a dopamine-dependent behavioral response to morphine; (iii) morphine-induced dopamine release in the nucleus accumbens, a dopaminergic projection site mediating the locomotor and reinforcing effects of drugs of abuse. Blockade of MRs by spironolactone had no significant effects on locomotion induced by systemic morphine. In contrast, blockade of GRs by either RU38486 or RU39305, which is devoid of antiprogesterone effects, reduced the locomotor response to morphine, and this effect was dose dependent. GR antagonists also reduced the locomotor response to intraventral tegmental area morphine as well as the basal and morphine-induced increase in accumbens dopamine, as measured by microdialysis in freely moving rats. In contrast, spironolactone did not modify dopamine release. In conclusion, glucocorticoids, via GRs, facilitate the dopamine-dependent behavioral effects of morphine, probably by facilitating dopamine release. The possibility of decreasing the behavioral and dopaminergic effects of opioids by an acute administration of GR antagonists may open new therapeutic strategies for treatment of drug addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA secondary structures (hairpins) that form as the nascent RNA emerges from RNA polymerase are important components of many signals that regulate transcription, including some pause sites, all ρ-independent terminators, and some antiterminators. At the his leader pause site, a 5-bp-stem, 8-nt-loop pause RNA hairpin forms 11 nt from the RNA 3′ end and stabilizes a transcription complex conformation slow to react with NTP substrate. This stabilization appears to depend at least in part on an interaction with RNA polymerase. We tested for RNA hairpin interaction with the paused polymerase by crosslinking 5-iodoUMP positioned specifically in the hairpin loop. In the paused conformation, strong and unusual crosslinking of the pause hairpin to β904–950 replaced crosslinking to β′ and to other parts of β that occurred in nonpaused complexes prior to hairpin formation. These changes in nascent RNA interactions may inhibit reactive alignment of the RNA 3′ end in the paused complex and be related to events at ρ-independent terminators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of mouse metallothionein (MT)-I and MT-II is transcriptionally induced by the synthetic glucocorticoid, dexamethasone (DEX) or both in vivo as well as in numerous cell lines. However, the location(s) of a glucocorticoid response element (GRE) has not been described. The observation that a marked MT-I gene, as well as heterologous genes, when placed in the context of 17 kb of flanking sequence from the MT locus, are inducible by DEX and lipopolysaccharide in transgenic mice renewed the search for the GRE. Analysis of a series of deletion constructs from this 17-kb region in cultured cells identified a single 455-bp region that conferred DEX induction on a reporter gene. This 455-bp region contains two GREs that bind to the glucocorticoid receptor as assessed by gel mobility shift. Deletion of this fragment from the 17-kb flanking region eliminates the DEX responsiveness of reporter genes. The two GREs, which are located ≈1 kb upstream of the MT-II gene and ≈7 kb upstream of the MT-I gene, are necessary for induction of both genes and can function independently of elements within the proximal promoter region of either gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation of Bruton’s tyrosine kinase (Btk) impairs B cell maturation and function and results in a clinical phenotype of X-linked agammaglobulinemia. Activation of Btk correlates with an increase in the phosphorylation of two regulatory Btk tyrosine residues. Y551 (site 1) within the Src homology type 1 (SH1) domain is transphosphorylated by the Src family tyrosine kinases. Y223 (site 2) is an autophosphorylation site within the Btk SH3 domain. Polyclonal, phosphopeptide-specific antibodies were developed to evaluate the phosphorylation of Btk sites 1 and 2. Crosslinking of the B cell antigen receptor (BCR) or the mast cell Fcɛ receptor, or interleukin 5 receptor stimulation each induced rapid phosphorylation at Btk sites 1 and 2 in a tightly coupled manner. Btk molecules were singly and doubly tyrosine-phosphorylated. Phosphorylated Btk comprised only a small fraction (≤5%) of the total pool of Btk molecules in the BCR-activated B cells. Increased dosage of Lyn in B cells augmented BCR-induced phosphorylation at both sites. Kinetic analysis supports a sequential activation mechanism in which individual Btk molecules undergo serial transphosphorylation (site 1) then autophosphorylation (site 2), followed by successive dephosphorylation of site 1 then site 2. The phosphorylation of conserved tyrosine residues within structurally related Tec family kinases is likely to regulate their activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is a side effect of systemically administered glucocorticoids, but the underlying molecular mechanism remains poorly understood. Ingestion of dexamethasone by rats telemetrically instrumented increased blood pressure progressively over 7 days. Plasma concentrations of Na+ and K+ and urinary Na+ and K+ excretion remained constant, excluding a mineralocorticoid-mediated mechanism. Plasma NO2−/NO3− (the oxidation products of NO) decreased to 40%, and the expression of endothelial NO synthase (NOS III) was found down-regulated in the aorta and several other tissues of glucocorticoid-treated rats. The vasodilator response of resistance arterioles was tested by intravital microscopy in the mouse dorsal skinfold chamber model. Dexamethasone treatment significantly attenuated the relaxation to the endothelium-dependent vasodilator acetylcholine, but not to the endothelium-independent vasodilator S-nitroso-N-acetyl-d,l-penicillamine. Incubation of human umbilical vein endothelial cells, EA.hy 926 cells, or bovine aortic endothelial cells with several glucocorticoids reduced NOS III mRNA and protein expression to 60–70% of control, an effect that was prevented by the glucocorticoid receptor antagonist mifepristone. Glucocorticoids decreased NOS III mRNA stability and reduced the activity of the human NOS III promoter (3.5 kilobases) to ≈70% by decreasing the binding activity of the essential transcription factor GATA. The expressional down-regulation of endothelial NOS III may contribute to the hypertension caused by glucocorticoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasion of erythrocytes by malaria parasites is mediated by specific molecular interactions. Whereas Plasmodium vivax and Plasmodium knowlesi use the Duffy blood group antigen, Plasmodium falciparum uses sialic acid residues of glycophorin A as receptors to invade human erythrocytes. P. knowlesi uses the Duffy antigen as well as other receptors to invade rhesus erythrocytes by multiple pathways. Parasite ligands that bind these receptors belong to a family of erythrocyte-binding proteins (EBP). The EBP family includes the P. vivax and P. knowlesi Duffy-binding proteins, P. knowlesi β and γ proteins, which bind alternate receptors on rhesus erythrocytes, and P. falciparum erythrocyte-binding antigen (EBA-175), which binds sialic acid residues of human glycophorin A. Binding domains of each EBP lie in a conserved N-terminal cysteine-rich region, region II, which contains around 330 amino acids with 12 to 14 conserved cysteines. Regions containing binding residues have now been mapped within P. vivax and P. knowlesi β region II. Chimeric domains containing P. vivax region II sequences fused to P. knowlesi β region II sequences were expressed on the surface of COS cells and tested for binding to erythrocytes. Binding residues of P. vivax region II lie in a 170-aa stretch between cysteines 4 and 7, and binding residues of P. knowlesi β region II lie in a 53-aa stretch between cysteines 4 and 5. Mapping regions responsible for receptor recognition is an important step toward understanding the structural basis for the interaction of these parasite ligands with host receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitopes depending on three-dimensional folding of proteins have during recent years been acknowledged to be main targets for many autoantibodies. However, a detailed resolution of conformation-dependent epitopes has to date not been achieved in spite of its importance for understanding the complex interaction between an autoantigen and the immune system. In analysis of immunodominant epitopes of the U1-70K protein, the major autoantigen recognized by human ribonucleoprotein (RNP)-positive sera, we have used diversely mutated recombinant Drosophila melanogaster 70K proteins as antigens in assays for human anti-RNP antibodies. Thus, the contribution of individual amino acids to antigenicity could be assayed with the overall structure of the major antigenic domain preserved, and analysis of how antigenicity can be reconstituted rather than obliterated was enabled. Our results reveal that amino acid residue 125 is situated at a crucial position for recognition by human anti-RNP autoantibodies and that flanking residues at positions 119–126 also appear to be of utmost importance for recognition. These results are discussed in relation to structural models of RNA-binding domains, and tertiary structure modeling indicates that the residues 119–126 are situated at easily accessible positions in the end of an α-helix in the RNA binding region. This study identifies a major conformation-dependent epitope of the U1-70K protein and demonstrates the significance of individual amino acids in conformational epitopes. Using this model, we believe it will be possible to analyze other immunodominant regions in which protein conformation has a strong impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathognomonic plaques of Alzheimer’s disease are composed primarily of the 39- to 43-aa β-amyloid (Aβ) peptide. Crosslinking of Aβ peptides by tissue transglutaminase (tTg) indicates that Gln15 of one peptide is proximate to Lys16 of another in aggregated Aβ. Here we report how the fibril structure is resolved by mapping interstrand distances in this core region of the Aβ peptide chain with solid-state NMR. Isotopic substitution provides the source points for measuring distances in aggregated Aβ. Peptides containing a single carbonyl 13C label at Gln15, Lys16, Leu17, or Val18 were synthesized and evaluated by NMR dipolar recoupling methods for the measurement of interpeptide distances to a resolution of 0.2 Å. Analysis of these data establish that this central core of Aβ consists of a parallel β-sheet structure in which identical residues on adjacent chains are aligned directly, i.e., in register. Our data, in conjunction with existing structural data, establish that the Aβ fibril is a hydrogen-bonded, parallel β-sheet defining the long axis of the Aβ fibril propagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oligomerization of activated d- and l- and racemic guanosine-5′-phosphoro-2-methylimidazole on short templates containing d- and l-deoxycytidylate has been studied. Results obtained with d-oligo(dC)s as templates are similar to those previously reported for experiments with a poly(C) template. When one l-dC or two consecutive l-dCs are introduced into a d-template, regiospecific synthesis of 3′-5′ oligo(G)s proceeds to the end of the template, but three consecutive l-dCs block synthesis. Alternating d-,l-oligomers do not facilitate oligomerization of the d-, l-, and racemic 2-guanosine-5′-phosphoro-2-methylimidazole. We suggest that once a “predominately d-metabolism” existed, occasional l-residues in a template would not have led to the termination of self-replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoid hormones, acting via nuclear receptors, regulate many metabolic processes, including hepatic gluconeogenesis. It recently has been recognized that intracellular glucocorticoid concentrations are determined not only by plasma hormone levels, but also by intracellular 11β-hydroxysteroid dehydrogenases (11β-HSDs), which interconvert active corticosterone (cortisol in humans) and inert 11-dehydrocorticosterone (cortisone in humans). 11β-HSD type 2, a dehydrogenase, thus excludes glucocorticoids from otherwise nonselective mineralocorticoid receptors in the kidney. Recent data suggest the type 1 isozyme (11β-HSD-1) may function as an 11β-reductase, regenerating active glucocorticoids from circulating inert 11-keto forms in specific tissues, notably the liver. To examine the importance of this enzyme isoform in vivo, mice were produced with targeted disruption of the 11β-HSD-1 gene. These mice were unable to convert inert 11-dehydrocorticosterone to corticosterone in vivo. Despite compensatory adrenal hyperplasia and increased adrenal secretion of corticosterone, on starvation homozygous mutants had attenuated activation of the key hepatic gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, presumably, because of relative intrahepatic glucocorticoid deficiency. The 11β-HSD-1 −/− mice were found to resist hyperglycamia provoked by obesity or stress. Attenuation of hepatic 11β-HSD-1 may provide a novel approach to the regulation of gluconeogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclophilin and FK506 binding protein (FKBP) accelerate cis–trans peptidyl-prolyl isomerization and bind to and mediate the effects of the immunosuppressants cyclosporin A and FK506. The normal cellular functions of these proteins, however, are unknown. We altered the active sites of FKBP12 and mitochondrial cyclophilin from the yeast Saccharomyces cerevisiae by introducing mutations previously reported to inactivate these enzymes. Surprisingly, most of these mutant enzymes were biologically active in vivo. In accord with previous reports, all of the mutant enzymes had little or no detectable prolyl isomerase activity in the standard peptide substrate-chymotrypsin coupled in vitro assay. However, in a variation of this assay in which the protease is omitted, the mutant enzymes exhibited substantial levels of prolyl isomerase activity (5–20% of wild-type), revealing that these mutations confer sensitivity to protease digestion and that the classic in vitro assay for prolyl isomerase activity may be misleading. In addition, the mutant enzymes exhibited near wild-type activity with two protein substrates, dihydrofolate reductase and ribonuclease T1, whose folding is accelerated by prolyl isomerases. Thus, a number of cyclophilin and FKBP12 “active-site” mutants previously identified are largely active but protease sensitive, in accord with our findings that these mutants display wild-type functions in vivo. One mitochondrial cyclophilin mutant (R73A), and also the wild-type human FKBP12 enzyme, catalyze protein folding in vitro but lack biological activity in vivo in yeast. Our findings provide evidence that both prolyl isomerase activity and other structural features are linked to FKBP and cyclophilin in vivo functions and suggest caution in the use of these active-site mutations to study FKBP and cyclophilin functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factor VIIa (VIIa), the serine protease that initiates the coagulation pathways, is catalytically activated upon binding to its cell surface receptor and cofactor tissue factor (TF). This study provides a comprehensive analysis of the functional surface of VIIa by alanine scanning mutagenesis of 112 residues. Residue side chains were defined which contribute to TF binding and factor X hydrolysis. Energetically important binding contacts at the interface with TF were identified in the first epidermal growth factor domain of VIIa (Gln-64, Ile-69, Phe-71, Arg-79) and in the protease domain (Arg-277, Met-306, Asp-309). The observed energetic defects are in good agreement with the corresponding residues in TF, suggesting that the VIIa light chain plays a prominent role in high affinity binding of cofactor. Mutation of protease domain interface residues indicated that TF allosterically influences the active site of VIIa. Stabilization of a labile zymogen to enzyme transition could explain the activating effect of TF on VIIa catalytic function. Residues important for factor X hydrolysis were found in three regions of the protease domain: (i) specificity determinants in the catalytic cleft and adjacent loops, (ii) an exosite near the TF binding site, and (iii) a large electronegative exosite which is in a position analogous to the basic exosite I of thrombin. TF regions involved in factor X activation are positioned on the same face of the TF·VIIa complex as the two exosites identified on the protease domain surface, providing evidence for an extended interaction of TF·VIIa with macromolecular substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cysteine and methionine are the two sulfur-containing residues normally found in proteins. Cysteine residues function in the catalytic cycle of many enzymes, and they can form disulfide bonds that contribute to protein structure. In contrast, the specific functions of methionine residues are not known. We propose that methionine residues constitute an important antioxidant defense mechanism. A variety of oxidants react readily with methionine to form methionine sulfoxide, and surface exposed methionine residues create an extremely high concentration of reactant, available as an efficient oxidant scavenger. Reduction back to methionine by methionine sulfoxide reductases would allow the antioxidant system to function catalytically. The effect of hydrogen peroxide exposure upon glutamine synthetase from Escherichia coli was studied as an in vitro model system. Eight of the 16 methionine residues could be oxidized with little effect on catalytic activity of the enzyme. The oxidizable methionine residues were found to be relatively surface exposed, whereas the intact residues were generally buried within the core of the protein. Furthermore, the susceptible residues were physically arranged in an array that guarded the entrance to the active site.