4 resultados para Global Dynamics

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atmosphere displays modes of variability whose structures exhibit a strong longitudinally symmetric (annular) component that extends from the surface to the stratosphere in middle and high latitudes of both hemispheres. In the past 30 years, these modes have exhibited trends that seem larger than their natural background variability, and may be related to human influences on stratospheric ozone and/or atmospheric greenhouse gas concentrations. The pattern of climate trends during the past few decades is marked by rapid cooling and ozone depletion in the polar lower stratosphere of both hemispheres, coupled with an increasing strength of the wintertime westerly polar vortex and a poleward shift of the westerly wind belt at the earth's surface. Annular modes of variability are fundamentally a result of internal dynamical feedbacks within the climate system, and as such can show a large response to rather modest external forcing. The dynamics and thermodynamics of these modes are such that strong synergistic interactions between stratospheric ozone depletion and greenhouse warming are possible. These interactions may be responsible for the pronounced changes in tropospheric and stratospheric climate observed during the past few decades. If these trends continue, they could have important implications for the climate of the 21st century.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent improvements in our understanding of the dynamics of soil carbon have shown that 20–40% of the approximately 1,500 Pg of C stored as organic matter in the upper meter of soils has turnover times of centuries or less. This fast-cycling organic matter is largely comprised of undecomposed plant material and hydrolyzable components associated with mineral surfaces. Turnover times of fast-cycling carbon vary with climate and vegetation, and range from <20 years at low latitudes to >60 years at high latitudes. The amount and turnover time of C in passive soil carbon pools (organic matter strongly stabilized on mineral surfaces with turnover times of millennia and longer) depend on factors like soil maturity and mineralogy, which, in turn, reflect long-term climate conditions. Transient sources or sinks in terrestrial carbon pools result from the time lag between photosynthetic uptake of CO2 by plants and the subsequent return of C to the atmosphere through plant, heterotrophic, and microbial respiration. Differential responses of primary production and respiration to climate change or ecosystem fertilization have the potential to cause significant interrannual to decadal imbalances in terrestrial C storage and release. Rates of carbon storage and release in recently disturbed ecosystems can be much larger than rates in more mature ecosystems. Changes in disturbance frequency and regime resulting from future climate change may be more important than equilibrium responses in determining the carbon balance of terrestrial ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, Block and coworkers [Visscher, K., Schnitzer, M. J., & Block, S. M. (1999) Nature (London) 400, 184–189 and Schnitzer, M. J., Visscher, K. & Block, S. M. (2000) Nat. Cell Biol. 2, 718–723] have reported extensive observations of individual kinesin molecules moving along microtubules in vitro under controlled loads, F = 1 to 8 pN, with [ATP] = 1 μM to 2 mM. Their measurements of velocity, V, randomness, r, stalling force, and mean run length, L, reveal a need for improved theoretical understanding. We show, presenting explicit formulae that provide a quantitative basis for comparing distinct molecular motors, that their data are satisfactorily described by simple, discrete-state, sequential stochastic models. The simplest (N = 2)-state model with fixed load-distribution factors and kinetic rate constants concordant with stopped-flow experiments, accounts for the global (V, F, L, [ATP]) interdependence and, further, matches relative acceleration observed under assisting loads. The randomness, r(F,[ATP]), is accounted for by a waiting-time distribution, ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{1}^{+}}}\end{equation*}\end{document}(t), [for the transition(s) following ATP binding] with a width parameter ν ≡ 〈t〉2/〈(Δt)2〉≃2.5, indicative of a dispersive stroke of mechanicity ≃0.6 or of a few (≳ν − 1) further, kinetically coupled states: indeed, N = 4 (but not N = 3) models do well. The analysis reveals: (i) a substep of d0 = 1.8–2.1 nm on ATP binding (consistent with structurally based suggestions); (ii) comparable load dependence for ATP binding and unbinding; (iii) a strong load dependence for reverse hydrolysis and subsequent reverse rates; and (iv) a large (≳50-fold) increase in detachment rate, with a marked load dependence, following ATP binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The onset of measles vaccination in England and Wales in 1968 coincided with a marked drop in the temporal correlation of epidemic patterns between major cities. We analyze a variety of hypotheses for the mechanisms driving this change. Straightforward stochastic models suggest that the interaction between a lowered susceptible population (and hence increased demographic noise) and nonlinear dynamics is sufficient to cause the observed drop in correlation. The decorrelation of epidemics could potentially lessen the chance of global extinction and so inhibit attempts at measles eradication.