3 resultados para Giordano, Luca, 1634-1705.
em National Center for Biotechnology Information - NCBI
Resumo:
The assumption that genes encoding tyrosine kinase receptors could play a role in human cancers has been confirmed by the identification of oncogenic mutations in the kinase domain of RET and KIT. Recently, homologous residues were found mutated in MET, in papillary renal carcinomas (PRCs). The link coupling these genetic lesions to cellular transformation is still unclear. METPRC mutations result in increased kinase activity and—in some instances, i.e., M1250T substitution—in changes in substrate specificity. A direct correlation occurs between the transforming potential of METPRC mutants and their ability to constitutively associate with signal transducers through two phosphorylated tyrosines (Y1349VHVNATY1356VNV) located in the receptor tail. Substitution of these “docking tyrosines” with phenylalanines leaves unaffected the altered properties of the kinase but abrogates transformation and invasiveness in vitro. Uncoupling the receptor from signal transducers with a tyrosine-phosphorylated peptide derivative (YpVNV) inhibits invasive growth induced by METPRC mutants. These data indicate that constitutive receptor coupling to downstream signal transducers is a key mechanism in neoplastic transformation driven by mutated MET and suggest a therapeutic strategy to target neoplastic diseases associated with this oncogene.
Resumo:
The human Rb2/p130 gene shares many structural and functional features with the retinoblastoma gene and the retinoblastoma-related p107 gene. In the present study, we have cloned and partially sequenced the gene coding for the Rb2/p130 protein from human genomic libraries. The complete intron-exon organization of this gene has been elucidated. The gene contains 22 exons spanning over 50 kb of genomic DNA. The length of individual exons ranges from 65 to 1517 bp. The largest intron spans over 9 kb, and the smallest has only 82 bp. The 5' flanking region revealed a structural organization characteristic of promoters of "housekeeping" and growth control-related genes. A typical TATA or CAAT box is not present, but there are several GC boxes and potential binding sites for numerous transcription factors. This study provides the molecular basis for understanding the transcriptional control of the Rb2/p130 gene and for implementing a comprehensive Rb2/p130 mutation screen using genomic DNA as a template.
Resumo:
The retinoblastoma (RB) gene specifies a nuclear phosphoprotein (pRb 105), which is a prototype tumor suppressor inactivated in a variety of human tumors. Recent studies suggest that RB is also involved in embryonic development of murine central nervous and hematopoietic systems. We have investigated RB expression and function in human adult hematopoiesis--i.e., in liquid suspension culture of purified quiescent hematopoietic progenitor cells (HPCs) induced by growth factor stimulus to proliferation and unilinage differentiation/maturation through the erythroid or granulocytic lineage. In the initial HPC differentiation stages, the RB gene is gradually induced at the mRNA and protein level in both erythroid and granulopoietic cultures. In late HPC differentiation and then precursor maturation, RB gene expression is sustained in the erythroid lineage, whereas it is sharply downmodulated in the granulocytic series. Functional studies were performed by treatment of HPC differentiation culture with phosphorothioate antisense oligomer targeting Rb mRNA; coherent with the expression pattern, oligomer treatment of late HPCs causes a dose-dependent and selective inhibition of erythroid colony formation. These observations suggest that the RB gene plays an erythroid- and stage-specific functional role in normal adult hematopoiesis, particularly at the level of late erythroid HPCs.