4 resultados para Gingko biloba

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracts of Ginkgo biloba leaves are consumed as dietary supplements to counteract chronic, age-related neurological disorders. We have applied high-density oligonucleotide microarrays to define the transcriptional effects in the cortex and hippocampus of mice whose diets were supplemented with the herbal extract. Gene expression analysis focused on the mRNAs that showed a more than 3-fold change in their expression. In the cortex, mRNAs for neuronal tyrosine/threonine phosphatase 1, and microtubule-associated τ were significantly enhanced. Hyperphosphorylated τ is the major constituent of the neurofibrillary tangles in the brains of Alzheimer's disease patients. The expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-2, calcium and chloride channels, prolactin, and growth hormone (GH), all of which are associated with brain function, were also up-regulated. In the hippocampus, only transthyretin mRNA was upregulated. Transthyretin plays a role in hormone transport in the brain and possibly a neuroprotective role by amyloid-β sequestration. This study reveals that diets supplemented with Ginkgo biloba extract have notable neuromodulatory effects in vivo and illustrates the utility of genome-wide expression monitoring to investigate the biological actions of complex extracts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Penetration of 3H-labeled water (3H2O) and the 14C-labeled organic acids benzoic acid ([14C]BA), salicylic acid ([14C]SA), and 2,4-dichlorophenoxyacetic acid ([14C]2,4-D) were measured simultaneously in isolated cuticular membranes of Prunus laurocerasus L., Ginkgo biloba L., and Juglans regia L. For each of the three pairs of compounds (3H2O/[14C]BA, 3H2O/[14C]SA, and 3H2O/[14C]2,4-D) rates of cuticular water penetration were highly correlated with the rates of penetration of the organic acids. Therefore, water and organic acids penetrated the cuticles by the same routes. With the combination 3H2O/[14C]BA, co-permeability was measured with isolated cuticles of nine other plant species. Permeances of 3H2O of all 12 investigated species were highly correlated with the permeances of [14C]BA (r2 = 0.95). Thus, cuticular transpiration can be predicted from BA permeance. The application of this experimental method, together with the established prediction equation, offers the opportunity to answer several important questions about cuticular transport physiology in future investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A DNA sequence, TPE1, representing the internal domain of a Ty1-copia retroelement, was isolated from genomic DNA of Pinus elliottii Engelm. var. elliottii (slash pine). Genomic Southern analysis showed that this sequence, carrying partial reverse transcriptase and integrase gene sequences, is highly amplified within the genome of slash pine and part of a dispersed element >4.8 kbp. Fluorescent in situ hybridization to metaphase chromosomes shows that the element is relatively uniformly dispersed over all 12 chromosome pairs and is highly abundant in the genome. It is largely excluded from centromeric regions and intercalary chromosomal sites representing the 18S-5.8S-25S rRNA genes. Southern hybridization with specific DNA probes for the reverse transcriptase gene shows that TPE1 represents a large subgroup of heterogeneous Ty1-copia retrotransposons in Pinus species. Because no TPE1 transcription could be detected, it is most likely an inactive element--at least in needle tissue. Further evidence for inactivity was found in recombinant reverse transcriptase and integrase sequences. The distribution of TPE1 within different gymnosperms that contain Ty1-copia group retrotransposons, as shown by a PCR assay, was investigated by Southern hybridization. The TPE1 family is highly amplified and conserved in all Pinus species analyzed, showing a similar genomic organization in the three- and five-needle pine species investigated. It is also present in spruce, bald cypress (swamp cypress), and in gingko but in fewer copies and a different genomic organization.