4 resultados para Geologic and tectonic settings

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) binding proteins (IGFBPs) modulate the actions of the insulin-like growth factors in endocrine, paracrine, and autocrine settings. Additionally, some IGFBPs appear to exhibit biological effects that are IGF independent. The six high-affinity IGFBPs that have been characterized to date exhibit 40–60% amino acid sequence identity overall, with the most conserved sequences in their NH2 and COOH termini. We have recently demonstrated that the product of the mac25/IGFBP-7 gene, which shows significant conservation in the NH2 terminus, including an “IGFBP motif” (GCGCCXXC), exhibits low-affinity IGF binding. The closely related mammalian genes connective tissue growth factor (CTGF) gene, nov, and cyr61 encode secreted proteins that also contain the conserved sequences and IGFBP motifs in their NH2 termini. To ascertain if these genes, along with mac25/IGFBP-7, encode a family of low-affinity IGFBPs, we assessed the IGF binding characteristics of recombinant human CTGF (rhCTGF). The ability of baculovirus-synthesized rhCTGF to bind IGFs was demonstrated by Western ligand blotting, affinity cross-linking, and competitive affinity binding assays using 125I-labeled IGF-I or IGF-II and unlabeled IGFs. CTGF, like mac25/IGFBP-7, specifically binds IGFs, although with relatively low affinity. On the basis of these data, we propose that CTGF represents another member of the IGFBP family (IGFBP-8) and that the CTGF gene, mac25/IGFBP-7, nov, and cyr61 are members of a family of low-affinity IGFBP genes. These genes, along with those encoding the high-affinity IGFBPs 1–6, together constitute an IGFBP superfamily whose products function in IGF-dependent or IGF-independent modes to regulate normal and neoplastic cell growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platelet-derived growth factor (PDGF) is a broadly expressed mitogenic and chemotactic factor with diverse roles in a number of physiologic and pathologic settings. The zinc finger transcription factors Sp1, Sp3 and Egr-1 bind to overlapping elements in the proximal PDGF B-chain promoter and activate transcription of this gene. The anthracycline nogalamycin has previously been reported to inhibit the capacity of Egr-1 to bind DNA in vitro. Here we used electrophoretic mobility shift assays to show that nogalamycin added to cells in culture did not alter the interaction of Egr-1 with the PDGF-B promoter. Instead, it enhanced the capacity of Sp1 to bind DNA. Nogalamycin increased PDGF-B mRNA expression at the level of transcription, which was abrogated by mutation of the Sp1 binding site in the PDGF-B promoter or overexpression of mutant Sp1. Rather than increasing total levels of Sp1, nogalamycin altered the phosphorylation state of the transcription factor. Overexpression of dominant-negative PKC-ζ blocked nogalamycin-inducible Sp1 phosphorylation and PDGF-B promoter-dependent expression. Nogalamycin stimulated the phosphorylation of PKC-ζ (on residue Thr410). These findings demonstrate for the first time that PKC-ζ and Sp1 phosphorylation mediate the inducible expression of this growth factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Omega−3 polyunsaturated fatty acids (PUFAs) are essential components required for normal cellular function and have been shown to exert many preventive and therapeutic actions. The amount of n−3 PUFAs is insufficient in most Western people, whereas the level of n−6 PUFAs is relatively too high, with an n−6/n−3 ratio of >18. These two classes of PUFAs are metabolically and functionally distinct and often have important opposing physiological functions; their balance is important for homeostasis and normal development. Elevating tissue concentrations of n−3 PUFAs in mammals relies on chronic dietary intake of fat rich in n−3 PUFAs, because mammalian cells lack enzymatic activities necessary either to synthesize the precursor of n−3 PUFAs or to convert n−6 to n−3 PUFAs. Here we report that adenovirus-mediated introduction of the Caenorhabditis elegans fat-1 gene encoding an n−3 fatty acid desaturase into mammalian cells can quickly and effectively elevate the cellular n−3 PUFA contents and dramatically balance the ratio of n−6/n−3 PUFAs. Heterologous expression of the fat-1 gene in rat cardiac myocytes rendered cells capable of converting various n−6 PUFAs to the corresponding n−3 PUFAs, and changed the n−6/n−3 ratio from about 15:1 to 1:1. In addition, an eicosanoid derived from n−6 PUFA (i.e., arachidonic acid) was reduced significantly in the transgenic cells. This study demonstrates an effective approach to modifying fatty acid composition of mammalian cells and also provides a basis for potential applications of this gene transfer in experimental and clinical settings.