6 resultados para Geographic variation
em National Center for Biotechnology Information - NCBI
Resumo:
The cuticular hydrocarbon (CH) pheromones in Drosophila melanogaster exhibit strong geographic variation. African and Caribbean populations have a high ratio of 5,9 heptacosadiene/7,11 heptacosadiene (the “High” CH type), whereas populations from all other areas have a low ratio (“Low” CH type). Based on previous genetic mapping, DNA markers were developed that localized the genetic basis of this CH polymorphism to within a 13-kb region. We then carried out a hierarchical search for diagnostic nucleotide sites starting with four lines, and increasing to 24 and 43 lines from a worldwide collection. Within the 13-kb region, only one variable site shows a complete concordance with the CH phenotype. This is a 16-bp deletion in the 5′ region of a desaturase gene (desat2) that was recently suggested to be responsible for the CH polymorphism on the basis of its expression [Dallerac, R., Labeur, C., Jallon, J.-M., Knipple, D. C., Roelofs, W. L. & Wicker-Thomas, C. (2000) Proc. Natl. Acad. Sci. 97, 9449–9454]. The cosmopolitan Low type is derived from the ancestral High type, and DNA sequence variations suggest that the former spread worldwide with the aid of positive selection. Whether this CH variation could be a component of the sexual isolation between Zimbabwe and other cosmopolitan populations remains an interesting and unresolved question.
Resumo:
Chromosomal forms of Anopheles gambiae, given the informal designations Bamako, Mopti, and Savannah, have been recognized by the presence or absence of four paracentric inversions on chromosome 2. Studies of karyotype frequencies at sites where the forms occur in sympatry have led to the suggestion that these forms represent species. We conducted a study of the genetic structure of populations of An. gambiae from two villages in Mali, west Africa. Populations at each site were composed of the Bamako and Mopti forms and the sibling species, Anopheles arabiensis. Karyotypes were determined for each individual mosquito and genotypes at 21 microsatellite loci determined. A number of the microsatellites have been physically mapped to polytene chromosomes, making it possible to select loci based on their position relative to the inversions used to define forms. We found that the chromosomal forms differ at all loci on chromosome 2, but there were few differences for loci on other chromosomes. Geographic variation was small. Gene flow appears to vary among different regions within the genome, being lowest on chromosome 2, probably due to hitchhiking with the inversions. We conclude that the majority of observed genetic divergence between chromosomal forms can be explained by forces that need not involve reproductive isolation, although reproductive isolation is not ruled out. We found low levels of gene flow between the sibling species Anopheles gambiae and Anopheles arabiensis, similar to estimates based on observed frequencies of hybrid karyotypes in natural populations.
Resumo:
Geographic variation in cancer rates is thought to be the result of two major factors: environmental agents varying spatially and the attributes, genetic or cultural, of the populations inhabiting the areas studied. These attributes in turn result from the history of the populations in question. We had previously constructed an ethnohistorical database for Europe since 2200 B.C., permitting estimates of the ethnic composition of modern European populations. We were able to show that these estimates correlate with genetic distances. In this study, we wanted to see whether they also correlate with cancer rates. We employed two data sets of cancer mortalities from 42 types of cancer for the European Economic Community and for Central Europe. We subjected spatial differences in cancer mortalities, genetic, ethnohistorical, and geographic distances to matrix permutation tests to determine the magnitude and significance of their association. Our findings are that distances in cancer mortalities are correlated more with ethnohistorical distances than with genetic distances. Possibly the cancer rates may be affected by loci other than the genetic systems available to us, and/or by cultural factors mediated by the ethnohistorical differences. We find it remarkable that patterns of frequently ancient ethnic admixture are still reflected in modern cancer mortalities. Partial correlations with geography suggest that local environmental factors affect the mortalities as well.
Resumo:
A new set of European genetic data has been analyzed to dissect independent patterns of geographic variation. The most important cause of European genetic variation has been confirmed to correspond to the migration of Neolithic farmers from the area of origin of agriculture in the Middle East. The next most important component of genetic variation is apparently associated with a north-south gradient possibly due to adaptation to cold climates but also to the differentiation of the Uralic and the Indo-European language-speaking people; however, the relevant correlations are not significantly different from zero after elimination of the spatial autocorrelation. The third component is highly correlated with the infiltration of the Yamna ("Kurgan") people, nomadic pastoralists who domesticated the horse and who have been claimed to have spread Indo-European languages to Europe; this association, which is statistically significant even when taking spatial autocorrelations into account, does not completely exclude the hypothesis of Indo-European as the language of Neolithic farmers. It is possible that both expansions were responsible for the spread of different subfamilies of Indo-European languages, but our genetic data cannot resolve their relative importance.
Resumo:
Chloroplast DNA restriction-site variation was surveyed among 40 accessions representing all 11 species of giant senecios (Dendrosenecio, Asteraceae) at all but one known location, plus three outgroup species. Remarkably little variation (only 9 variable sites out of roughly 1000 sites examined) was found among the 40 giant senecio accessions, yet as a group they differ significantly (at 18 sites) from Cineraria deltoidea, the closest known relative. This pattern indicates that the giant senecios underwent a recent dramatic radiation in eastern Africa and evolved from a relatively isolated lineage within the Senecioneae. Biogeographic interpretation of the molecular phylogeny suggests that the giant senecios originated high on Mt. Kilimanjaro, with subsequent dispersion to the Aberdares, Mt. Kenya, and the Cherangani Hills, followed by dispersion westward to the Ruwenzori Mountains, and then south to the Virunga Mountains, Mt. Kahuzi, and Mt. Muhi, but with dispersion back to Mt. Elgon. Geographic radiation was an important antecedent to the diversification in eastern Africa, which primarily involved repeated altitudinal radiation, both up and down the mountains, leading to morphological parallelism in both directions. In general, the plants on a given mountain are more closely related to each other than they are to plants on other mountains, and plants on nearby mountains are more closely related to each other than they are to plants on more distant mountains. The individual steps of the geographic radiation have occurred at various altitudes, some clearly the result of intermountain dispersal. The molecular evidence suggests that two species are extant ancestors to other species on the same or nearby mountains.
Resumo:
Cultural inheritance can be considered as a mechanism of adaptation made possible by communication, which has reached its greatest development in humans and can allow long-term conservation or rapid change of culturally transmissible traits depending on circumstances and needs. Conservativeness/flexibility is largely modulated by mechanisms of sociocultural transmission. An analysis was carried out by testing the fit of three models to 47 cultural traits (classified in six groups) in 277 African societies. Model A (demic diffusion) is conservation over generations, as shown by correlations of cultural traits with language, used as a measure of historical connection. Model B (environmental adaptation) is measured by correlation to the natural environment. Model C (cultural diffusion) is the spread to neighbors by social contact in an epidemic-like fashion and was tested by measuring the tightness of geographic clustering of the traits. Most traits examined, in particular those affecting family structure and kinship, showed great conservation over generations, as shown by the fit of model A. They are most probably transmitted by family members. This is in agreement with the theoretical demonstration that cultural transmission in the family (vertical) is the most conservative one. Some traits show environmental effects, indicating the importance of adaptation to physical environment. Only a few of the 47 traits showed tight geographic clustering indicating that their spread to nearest neighbors follows model C, as is usually the case for transmission among unrelated people (called horizontal transmission).